题目链接:hdu 5317

  这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R),只需要求出它们在 1~7 的范围内的数量,然后暴力求出 gcd 即可。因为符合递增,可以设一个结点 struct { v[8]; } 记录 1~7 的数量,结点间可以相加减,也就可以用前缀和的思想去做(其实我也是看了别人的题解才明白这种思想,一开始用二分不是超时就是 wa 了,不过我竟发现自己手写的二分比库函数 lower_bound 要快!而且至少快 7~8 倍以上!看来以后用二分都尽量自己手写好了 (ㄒoㄒ)~~ )

  先附上用前缀和的思想的代码,加入了输入输出挂:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ; struct node {
int v[];
node() { memset(v,,sizeof(v)); }
node operator + (const node &n2) const {
node add;
for(int i = ; i <= ; ++i)
add.v[i] = v[i] + n2.v[i];
return add;
}
node operator - (const node &n2) const {
node sub;
for(int i = ; i <= ; ++i)
sub.v[i] = v[i] - n2.v[i];
return sub;
}
node& operator += (const node &n2) {
*this = *this + n2;
return *this;
}
node& operator -= (const node &n2) {
return *this = *this - n2;
}
}; int num[N];
node _count[N];
inline void init(int n = N - ) {
for(int i = ; i <= n; ++i)
if(!num[i])
for(int j = i; j <= n; j += i) ++num[j];
for(int i = ; i <= n; ++i) {
node tmp;
++tmp.v[num[i]];
_count[i] = _count[i - ] + tmp;
}
} inline int gcd(int a, int b) {
return b == ? a: gcd(b, a % b);
} #include<cctype>
template <typename T>
inline void read(T &x) {
x = ;
char ch = getchar();
bool flag = ;
while(!isdigit(ch) && ch != '-') ch = getchar();
if(ch == '-') {
flag = ;
ch = getchar();
}
while(isdigit(ch)) {
x = x * + (ch - '');
ch = getchar();
}
if(flag) x = -x;
} template <typename T>
inline void write(const T &x) {
if(x < ) putchar(char(x + ''));
else write(x / );
} int main() {
int t,L,R;
init();
read(t);
while(t--) {
read(L); read(R);
node p = _count[R] - _count[L - ];
int ans = ;
for(int i = ; i <= ; ++i) {
if(!p.v[i]) continue;
--p.v[i];
for(int j = i; j <= ; ++j)
if(p.v[j]) ans = max(ans, gcd(i,j));
++p.v[i];
}
write(ans);
puts("");
}
return ;
}

  说到前缀和,就可以联想起高效动态维护前缀和的树状数组。没错,只要能求前缀和的数据结构,都能用树状数组去维护,它的适用范围不只是简单的 int,long long 或者 一维数组(二维树状数组去维护)等等。因此我定义成模板类:

 #include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
const int N = ; struct node {
int v[];
void clear() { memset(v,,sizeof(v)); }
node() { clear(); }
node operator + (const node &n2) const {
node add;
for(int i = ; i <= ; ++i)
add.v[i] = v[i] + n2.v[i];
return add;
}
node operator - (const node &n2) const {
node sub;
for(int i = ; i <= ; ++i)
sub.v[i] = v[i] - n2.v[i];
return sub;
}
}; #define lowbit(x) ((x)&-(x))
template <typename T>
struct tree {
T c[N];
int maxn;
void clear() { // 或者直接 memset(c, 0, sizeof(c)) 也可以;
for(int i = ; i <= maxn; ++i)
c[i].clear();
}
tree(int maxn = N - ): maxn(maxn) { clear(); }
T sum(int x) const {
T res;
while(x) {
res = res + c[x];
x -= lowbit(x);
}
return res;
}
void add(int x, T d) {
while(x <= maxn) {
c[x] = c[x] + d;
x += lowbit(x);
}
}
}; tree<node> tr; int num[N];
void init(int n = N - ) {
for(int i = ; i <= n; ++i)
if(!num[i])
for(int j = i; j <= n; j += i) ++num[j];
for(int i = ; i <= n; ++i) {
node tmp;
++tmp.v[num[i]];
tr.add(i, tmp);
}
} inline int gcd(int a, int b) {
return b == ? a: gcd(b, a % b);
} int main() {
int t,L,R;
init();
scanf("%d",&t);
while(t--) {
scanf("%d %d",&L,&R);
node p = tr.sum(R) - tr.sum(L - );
int ans = ;
for(int i = ; i <= ; ++i) {
if(!p.v[i]) continue;
--p.v[i];
for(int j = i; j <= ; ++j)
if(p.v[j]) ans = max(ans, gcd(i, j));
++p.v[i];
}
printf("%d\n",ans);
}
return ;
}

hdu 5317 RGCDQ(前缀和)的更多相关文章

  1. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  2. HDU 5317 RGCDQ(素数个数 多校2015啊)

    题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...

  3. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  4. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  5. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  7. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  8. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  9. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. Android 5.1 - 状态栏充电标志问题

    Android 5.1 Ubuntu14.04  SourceInsigh 电量已满,插着USB头,观察Settings - Battery,电量为100%,状态为full,但仍有充电图标rust 之 ...

  2. easyui tab 关闭

    <div id="mm" class="easyui-menu" style="width:150px;">        &l ...

  3. asp.net 查询,导出

    using System;using System.Configuration;using System.Data;using System.Linq;using System.Web;using S ...

  4. hdu1081 To the Max

    直接暴力枚举所有子矩形至少需要O(n^4)的复杂度,显然这不是一个合理的解决方法. 上述方案忽略了矩形之间的联系,进行了过多不必要的计算. 实际上如果固定矩形的左右边界,则底边在i行的矩形内数值之和与 ...

  5. #ifdef DEBUG的理解

    今天看到一段代码,对ifdef的概念比较模糊,于是去学习了一下,找到一个很好的解释,如下: 在工程设置里有一些设置会对该工程自动产生一系列的宏,用以控制程序的编译和运行.就好象楼上说的一样,如果你把代 ...

  6. php操作redis常用方法源代码

    1,connect 描述:实例连接到一个Redis.参数:host: string,port: int返回值:BOOL 成功返回:TRUE;失败返回:FALSE 示例: <?php $redis ...

  7. 【Linux】方便的SecureCRT文件上传、下载命令

    使用SecureCRT连接服务器,可用命令上传.下载文件,非常方便. > 安装 如果系统报找不到以下命令,那么你可能没有安装软件.安装以下吧. [root@localhost ~]# yum - ...

  8. 如何快速清除.svn文件

    Windows Registry Editor Version 5.00[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Folder\shell\清除SVN信息] @=&qu ...

  9. 01scala环境搭建和基础

    1.环境搭建 1.下载安装jdk1.7以上版本,并进行环境变量的配置 2.下载scala-2.10.4.msi,安装后进行环境变量的配置 3.下载scala-SDK-4.1.1-vfinal-2.11 ...

  10. dual,rowid,rownum

    一. dual是一个虚拟表,用来构成select的语法规则,oracle保证dual里面永远只有一条记录.我们可以用它来做很多事情,如下: 1.查看当前用户,可以在 SQL Plus中执行下面语句 s ...