题目链接:hdu 5317

  这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R),只需要求出它们在 1~7 的范围内的数量,然后暴力求出 gcd 即可。因为符合递增,可以设一个结点 struct { v[8]; } 记录 1~7 的数量,结点间可以相加减,也就可以用前缀和的思想去做(其实我也是看了别人的题解才明白这种思想,一开始用二分不是超时就是 wa 了,不过我竟发现自己手写的二分比库函数 lower_bound 要快!而且至少快 7~8 倍以上!看来以后用二分都尽量自己手写好了 (ㄒoㄒ)~~ )

  先附上用前缀和的思想的代码,加入了输入输出挂:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ; struct node {
int v[];
node() { memset(v,,sizeof(v)); }
node operator + (const node &n2) const {
node add;
for(int i = ; i <= ; ++i)
add.v[i] = v[i] + n2.v[i];
return add;
}
node operator - (const node &n2) const {
node sub;
for(int i = ; i <= ; ++i)
sub.v[i] = v[i] - n2.v[i];
return sub;
}
node& operator += (const node &n2) {
*this = *this + n2;
return *this;
}
node& operator -= (const node &n2) {
return *this = *this - n2;
}
}; int num[N];
node _count[N];
inline void init(int n = N - ) {
for(int i = ; i <= n; ++i)
if(!num[i])
for(int j = i; j <= n; j += i) ++num[j];
for(int i = ; i <= n; ++i) {
node tmp;
++tmp.v[num[i]];
_count[i] = _count[i - ] + tmp;
}
} inline int gcd(int a, int b) {
return b == ? a: gcd(b, a % b);
} #include<cctype>
template <typename T>
inline void read(T &x) {
x = ;
char ch = getchar();
bool flag = ;
while(!isdigit(ch) && ch != '-') ch = getchar();
if(ch == '-') {
flag = ;
ch = getchar();
}
while(isdigit(ch)) {
x = x * + (ch - '');
ch = getchar();
}
if(flag) x = -x;
} template <typename T>
inline void write(const T &x) {
if(x < ) putchar(char(x + ''));
else write(x / );
} int main() {
int t,L,R;
init();
read(t);
while(t--) {
read(L); read(R);
node p = _count[R] - _count[L - ];
int ans = ;
for(int i = ; i <= ; ++i) {
if(!p.v[i]) continue;
--p.v[i];
for(int j = i; j <= ; ++j)
if(p.v[j]) ans = max(ans, gcd(i,j));
++p.v[i];
}
write(ans);
puts("");
}
return ;
}

  说到前缀和,就可以联想起高效动态维护前缀和的树状数组。没错,只要能求前缀和的数据结构,都能用树状数组去维护,它的适用范围不只是简单的 int,long long 或者 一维数组(二维树状数组去维护)等等。因此我定义成模板类:

 #include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
const int N = ; struct node {
int v[];
void clear() { memset(v,,sizeof(v)); }
node() { clear(); }
node operator + (const node &n2) const {
node add;
for(int i = ; i <= ; ++i)
add.v[i] = v[i] + n2.v[i];
return add;
}
node operator - (const node &n2) const {
node sub;
for(int i = ; i <= ; ++i)
sub.v[i] = v[i] - n2.v[i];
return sub;
}
}; #define lowbit(x) ((x)&-(x))
template <typename T>
struct tree {
T c[N];
int maxn;
void clear() { // 或者直接 memset(c, 0, sizeof(c)) 也可以;
for(int i = ; i <= maxn; ++i)
c[i].clear();
}
tree(int maxn = N - ): maxn(maxn) { clear(); }
T sum(int x) const {
T res;
while(x) {
res = res + c[x];
x -= lowbit(x);
}
return res;
}
void add(int x, T d) {
while(x <= maxn) {
c[x] = c[x] + d;
x += lowbit(x);
}
}
}; tree<node> tr; int num[N];
void init(int n = N - ) {
for(int i = ; i <= n; ++i)
if(!num[i])
for(int j = i; j <= n; j += i) ++num[j];
for(int i = ; i <= n; ++i) {
node tmp;
++tmp.v[num[i]];
tr.add(i, tmp);
}
} inline int gcd(int a, int b) {
return b == ? a: gcd(b, a % b);
} int main() {
int t,L,R;
init();
scanf("%d",&t);
while(t--) {
scanf("%d %d",&L,&R);
node p = tr.sum(R) - tr.sum(L - );
int ans = ;
for(int i = ; i <= ; ++i) {
if(!p.v[i]) continue;
--p.v[i];
for(int j = i; j <= ; ++j)
if(p.v[j]) ans = max(ans, gcd(i, j));
++p.v[i];
}
printf("%d\n",ans);
}
return ;
}

hdu 5317 RGCDQ(前缀和)的更多相关文章

  1. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  2. HDU 5317 RGCDQ(素数个数 多校2015啊)

    题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...

  3. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  4. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  5. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  7. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  8. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  9. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. 【转】Tomcat中部署java web应用程序

    http://www.blogjava.net/jiafang83/archive/2009/06/02/279644.html 转载:今天给大家介绍怎样在Tomcat5.5.9中部署Java Web ...

  2. linux ubuntu12.04 解压中文zip文件,解压之后乱码

    在windows下压缩后的zip包,在ubuntu下解压后显示为乱码问题 1.zip文件解压之后文件名乱码: 第一步 首先安装7zip和convmv(如果之前没有安装的话) 在命令行执行安装命令如下: ...

  3. [团队项目]SCRUM项目5.0

    5.0--------------------------------------------------- 1.团队成员完成自己认领的任务. 2.燃尽图:理解.设计并画出本次Sprint的燃尽图的理 ...

  4. PHP和ajax详解

    优点:减轻服务器的负担,按需取数据,最大程度的减少冗余请求局部刷新页面,减少用户心理和实际的等待时间,带来更好的用户体验基于xml标准化,并被广泛支持,不需安装插件等进一步促进页面和数据的分离缺点:A ...

  5. 关于android中Bundle的使用

      1.Android using Bundle for sharing variables 注:android中使用Bundle来共享变量,下例中Activity1和Activity2通过bundl ...

  6. n条直线最多能将一个平面分成多少部分?

    f(n)=n(n+1)/2+1 原理:第N条直线可以被前N-1条直线分为N段,对于 每1段则将平面分为两份,所以对于前 f(n)=f(n-1)+n. f(n-1)=f(n-2)+n-1 ...... ...

  7. 链表——PowerShell版

    链表是由一系列节点串连起来组成的,每一个节点包括数值部分和指针部分,上一节点的指针部分指向下一节点的数值部分所在的位置. 在C语言中我们有两种方式来定义链表—— 1.定义结构体:来表示链表中的节点,节 ...

  8. javascript + jquery函数大全

    JAVASCRIPT Array 函数   array创建数组 concat()连接两个或更多的数组,并返回结果. join()把数组中所有元素组成字符串. pop()删除并返回数组的最后一个元素 s ...

  9. Eclipse中新建WEB项目,JSP页面报错。

    在Eclipse中新建java web项目,在JSP页面的第一行提示这个错误: [The superclass "javax.servlet.http.HttpServlet" w ...

  10. kaili 2.0 metasploit连接postgres数据库

    第一步:使用命令 db_init 初始化数据库