vjudge 上题目链接:uva 11324

  scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选。把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它的结点数,则题目转化为求 SCC 图上权最大的路径。由于 SCC 图是一个 DAG, 可以用动态规划求解。"

  一开始我理解成了求所有结点的权值和,后来才明白所求的结果一定是 scc 上一条路径来的,即不能有任何分叉路径。我的代码如下:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N = ; vector<int> G[N], G2[N];
bool vis[N];
int sccno[N], scc_cnt, p[N];
vector<int> S; void dfs(int x) {
vis[x] = ;
for(int i = ; i < G[x].size(); ++i)
if(!vis[G[x][i]]) dfs(G[x][i]);
S.push_back(x);
} void dfs2(int x, int &num) {
if(sccno[x]) return ;
sccno[x] = scc_cnt;
++num;
for(int i = ; i < G2[x].size(); ++i)
dfs2(G2[x][i], num);
} void find_scc(int n) {
memset(vis, , sizeof vis);
S.clear();
for(int i = ; i < n; ++i)
if(!vis[i]) dfs(i); memset(sccno, , sizeof sccno);
memset(p, , sizeof p);
scc_cnt = ;
for(int i = n - ; i >= ; --i)
if(!sccno[S[i]]) {
++scc_cnt;
int num = ;
dfs2(S[i], num);
p[scc_cnt] = num;
}
} vector<int> d[N];
void debug(int n) {
for(int i = ; i < n; ++i)
d[i].clear();
for(int i = ; i < n; ++i)
d[sccno[i]].push_back(i); for(int u = ; u <= scc_cnt; ++u) {
printf("sccno[%d]: ",u);
for(int i = ; i < d[u].size(); ++i)
printf("%d ",d[u][i] + );
printf(" num = %d p[%d] = %d\n", d[u].size(), u, p[u]);
}
} vector<int> g3[N];
int node(int x) {
if(vis[x]) return p[x];
vis[x] = ;
int Max = ;
for(int i = ; i < g3[x].size(); ++i)
Max = max(Max, node(g3[x][i]));
return p[x] += Max;
} void new_graph(int n) {
for(int i = ; i <= n; ++i)
g3[i].clear();
for(int u = ; u < n; ++u)
for(int i = ; i < G[u].size(); ++i) {
int v = G[u][i];
if(sccno[u] != sccno[v]) g3[sccno[u]].push_back(sccno[v]);
}
memset(vis, , sizeof vis);
int ans = ;
for(int i = ; i <= scc_cnt; ++i)
ans = max(ans, node(i));
printf("%d\n",ans);
} int main() {
int t,n,m,x,y;
scanf("%d",&t);
while(t--) {
scanf("%d %d",&n,&m);
for(int i = ; i < n; ++i) {
G[i].clear();
G2[i].clear();
}
while(m--) {
scanf("%d %d",&x,&y);
--x; --y;
G[x].push_back(y);
G2[y].push_back(x);
}
find_scc(n);
// debug(n);
new_graph(n);
}
return ;
}

uva 11324 The Largest Clique的更多相关文章

  1. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  2. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  3. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  4. uva 11324 The Largest Clique (Tarjan+记忆化)

    /*每个环 要么不选 要么全选 可缩点 就得到一个GAD图 然后搞搞算出最大路径*/ #include<iostream> #include<cstdio> #include& ...

  5. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  6. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  7. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

  8. UVa 11324 The Largest Clique (强连通分量+DP)

    题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...

  9. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

随机推荐

  1. java关于StringBuffer和StringBuilder写入文件的效率问题

    StringBuffer在存储字符的时候,是有上限的,一旦达到上线就会出错,自己在项目中遇到一个从数据库中查询数据,然后写入到本地文件中 ,数据量大概有30万条,此时的效率十分的低.下面是大致的模拟该 ...

  2. 参考_Android中,如何新建一个界面,并且实现从当前界面切换到到刚才新建的(另外一个)界面

    参考地址: http://www.crifan.com/android_how_to_create_new_ui_and_switch_to_another_new_ui/ 想要实现,在Android ...

  3. 周赛-Colored Sticks 分类: 比赛 2015-08-02 09:33 7人阅读 评论(0) 收藏

    Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 32423 Accepted: 8556 Desc ...

  4. JAVA基础知识之JVM-——自定义类加载器

    JVM中除了根加载器之外其他加载器都是ClassLoader的子类实例, 可以通过扩展ClassLoader的子类,通过重写方法来实现自定义的类加载器. ClassLoader中有两个关键的方法如下, ...

  5. ZendStudio调试配置(XDebug)

    服务器配置:WAMP Sever 3.0.0 调试器环境:Zend Studio 12.0 Build ID: 12.0.0.v20141117-20141115-2331-278 License:  ...

  6. Linux文件描述符与打开文件之间的区别(转载)

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/38965239   1. 概述     在Linux系统中一切皆可以看成是文件,文件又可分为: ...

  7. IIS WebForm开发基础

    Winform是在客户电脑操作的. WebForm是客户机通过一个IP地址,到IIs服务器,再进行信息反馈,在非客户机上操作的. 一.WebForm 运行流程(1)需要访问数据库(aspx) 客户机打 ...

  8. EF 存储过程

    今天我们利用EF执行sql语句的方式来执行存储过程,并得到OutPut的值. 首先新建存储过程: Create PROCEDURE proc_testEF   (     @id int,     @ ...

  9. centos6.6下编译安装mysql5.6之后启动失败:Starting MySQL... ERROR! The server quit without updating PID file (/var/lib/mysql/localhost.localdomain.pid).

    今天在编译安装mysql5.6时候出现Starting MySQL... ERROR! The server quit without updating PID file (/var/lib/mysq ...

  10. ruby学习总结05

    1.数值类(Numeric) 有理数:Rational(分子,分母) 复数:Complex(实数,虚数) 随机数:Rnadom   rand()  返回比1小的浮点数,rand(种子数)  返回0到该 ...