Network of Schools(强连通分量缩点(邻接表&矩阵))
Description
in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output
Sample Input
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output
1
2
开始用桥来判断是不是同一个连通分量,结果果断错了,其实下图应该就会出错
原因是通过头插法先遍历3,结果3的出度为0,由于2通向3已经访问过,因此不能在访问,因此2-->3的路没有标志cut,没法统计这天边的出入度情况,因此出度为0的变为2个了,正确答案应该是1个,所以错了,不能企图通过桥来算出出度入度
错误代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( edge[j].cut)//belong[i]!=belong[ edge[j].to ])//edge[j].cut )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}
正确代码矩阵:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXV 110
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b) int n,map[MAXV][MAXV],outdegree[MAXV],indegree[MAXV];
int dfn[MAXV]; //第一次访问的步数
int low[MAXV]; //子树中最早的步数
int stap[MAXV],stop; //模拟栈
bool instack[MAXV]; //是否在栈中
int count; //记录连通分量的个数
int cnt; //记录搜索步数
int belong[MAXV]; //属于哪个连通分量 void init(){
count=stop=cnt=0;
memset(instack,false,sizeof(instack));
memset(map,0,sizeof(map));
memset(dfn,0,sizeof(dfn));
} void tarjan(int x){
int i;
dfn[x]=low[x]=++cnt;
stap[stop++]=x;
instack[x]=true;
for(i=1;i<=n;i++){
if(!map[x][i]) continue;
if(!dfn[i]){
tarjan(i);
low[x]=min(low[i],low[x]);
}else if(instack[i])
low[x]=min(dfn[i],low[x]);
//与x相连,但是i已经被访问过,且还在栈中
//用子树节点更新节点第一次出现的时间
} if(low[x]==dfn[x]){
count++;
while(1){
int tmp=stap[--stop];
belong[tmp]=count;
instack[tmp]=false;
if(tmp==x) break;
}
}
} void output(){
int i,j,inzero=0,outzero=0;
for(i=1;i<=n;i++){
indegree[i]=outdegree[i]=0;
}
for(i=1;i<=n;i++) //找连通分量入度与出度
for(j=1;j<=n;j++)
if(map[i][j] && belong[i]!=belong[j]){
indegree[belong[j]]++;
outdegree[belong[i]]++;
}
for(i=1;i<=count;i++){ //找入度与出度为0的点
if(!indegree[i]) inzero++;
if(!outdegree[i]) outzero++;
} if(count==1) //只有1个结点要特判
printf("1\n0\n");
else
printf("%d\n%d\n",inzero,max(inzero,outzero));
} int main(){
int i,a;
while(~scanf("%d",&n)){
init();
for(i=1;i<=n;i++){
while(scanf("%d",&a) && a) map[i][a]=1;
}
for(i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
output();
}
return 0;
}
正确代码邻接表
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( belong[i]!=belong[ edge[j].to ] )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}
Network of Schools(强连通分量缩点(邻接表&矩阵))的更多相关文章
- POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)
Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...
- POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度
题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Tot ...
- Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13801 Accepted: 55 ...
- POJ 1236 Network of Schools (强连通分量缩点求度数)
题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- poj-1236.network of schools(强连通分量 + 图的入度出度)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 27121 Accepted: 10 ...
- [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)
nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. --------- ...
- POJ1236 Network of Schools (强连通分量,注意边界)
A number of schools are connected to a computer network. Agreements have been developed among those ...
- 【强连通分量缩点】poj 1236 Network of Schools
poj.org/problem?id=1236 [题意] 给定一个有向图,求: (1)至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点 (2)至少要加多少条边,才能使得从任何一个顶点出发,都 ...
随机推荐
- html之table标签
简单的html表格,由table元素以及一个或多个tr,th,td元素组成. tr:定义表格行 th:定义表格头 td:定义表格单元 更复杂的 HTML 表格也可能包括 caption.col.col ...
- C语言常用的小代码
圆周率Pi tan(Pi/4)=1 => Pi=4*arctan(1) 反正切函数arctan()在C语言里表示为atan(),为保证精度取圆周率的代码如下: const double Pi = ...
- 将Excel数据导入Oracle中
第一步:修改Excel 1.将Excel的表头修改为目标数据库中表的字段名 2.去重(如果有需要的话) 删除Excel表中的重复数据: 选择去重的列: 删除成功后提示: 第二步:将修改后的Excel另 ...
- THCircularProgressView.h 的使用方法
// // MainViewController.m // fitmiss // // Created by bill on 13-4-11. // Copyright (c) 2013年 lear. ...
- HTML5外包团队——技术分享:HTML5判断设备在线离线及监听网络状态变化例子
<!doctype html> <html> <head> <meta http-equiv="content-type" content ...
- 战胜忧虑<4>——让平均概率来替你分忧
让平均概率来替你分忧. 我们可以根据事情发生的平均率来评估我们的忧虑究竟值不值,如此一来,我想你和我应该可以去除99%的忧虑. 故事 我从小生长在密苏里州的一个农场,有一天,正帮妈妈采摘樱桃的时候,我 ...
- WINDOWS黑客基础(4):查找进程运行的基址
从WINDOWS VISITA开始以后,windows已经开始支持随机基址的关系,也就是说以前我们的进程基址都是从0x40000开始的,如果一个变量在我们第一次运行的时候地址为0x50000,那么以后 ...
- Makefile编译选项CC与CXX/CPPFLAGS、CFLAGS与CXXFLAGS/LDFLAGS
转自:http://www.firekyrin.com/archives/597.html 编译选项 让我们先看看 Makefile 规则中的编译命令通常是怎么写的. 大多数软件包遵守如下约定俗成的规 ...
- .NET常用方法——邮件发送
邮件发送类文件,可直接使用: 调用方法(实例化.静态调用): 实例化: string exception = ""; SendEmail.SendEmail SE = new Se ...
- JavaScript中回调函数的使用
在JavaScript中,回调函数具体的定义为:函数A作为参数(函数引用)传递到另一个函数B中,并且这个函数B执行函数A.我们就说函数A叫做回调函数.如果没有名称(函数表达式),就叫做匿名回调函数. ...