Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is
in the distribution list of school A, then A does not necessarily appear in the list of school B

You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2
这题给了一个有向图。
 
需要解决两个问题:
第一是需要给多少个点,才能传遍所有点。
 
第二问是加多少条边,使得整个图变得强连通。
 
使用Tarjan进行缩点,得到一个SCC图、
 
这个图有多少个入度为0的,多少个出度为0的。
 
假设有n个入度为0,m个出度为0
 
那么第一个答案就是n,第二个答案是max(n,m)
 
 
具体证明不解释了,貌似以前做过的题目,有解释。
 
需要注意的是假如只有一个强连通分量,即整个图是连通的,那么第一个答案是1,第二个答案是0

开始用桥来判断是不是同一个连通分量,结果果断错了,其实下图应该就会出错

原因是通过头插法先遍历3,结果3的出度为0,由于2通向3已经访问过,因此不能在访问,因此2-->3的路没有标志cut,没法统计这天边的出入度情况,因此出度为0的变为2个了,正确答案应该是1个,所以错了,不能企图通过桥来算出出度入度

错误代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( edge[j].cut)//belong[i]!=belong[ edge[j].to ])//edge[j].cut )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}

正确代码矩阵:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXV 110
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b) int n,map[MAXV][MAXV],outdegree[MAXV],indegree[MAXV];
int dfn[MAXV]; //第一次访问的步数
int low[MAXV]; //子树中最早的步数
int stap[MAXV],stop; //模拟栈
bool instack[MAXV]; //是否在栈中
int count; //记录连通分量的个数
int cnt; //记录搜索步数
int belong[MAXV]; //属于哪个连通分量 void init(){
count=stop=cnt=0;
memset(instack,false,sizeof(instack));
memset(map,0,sizeof(map));
memset(dfn,0,sizeof(dfn));
} void tarjan(int x){
int i;
dfn[x]=low[x]=++cnt;
stap[stop++]=x;
instack[x]=true;
for(i=1;i<=n;i++){
if(!map[x][i]) continue;
if(!dfn[i]){
tarjan(i);
low[x]=min(low[i],low[x]);
}else if(instack[i])
low[x]=min(dfn[i],low[x]);
//与x相连,但是i已经被访问过,且还在栈中
//用子树节点更新节点第一次出现的时间
} if(low[x]==dfn[x]){
count++;
while(1){
int tmp=stap[--stop];
belong[tmp]=count;
instack[tmp]=false;
if(tmp==x) break;
}
}
} void output(){
int i,j,inzero=0,outzero=0;
for(i=1;i<=n;i++){
indegree[i]=outdegree[i]=0;
}
for(i=1;i<=n;i++) //找连通分量入度与出度
for(j=1;j<=n;j++)
if(map[i][j] && belong[i]!=belong[j]){
indegree[belong[j]]++;
outdegree[belong[i]]++;
}
for(i=1;i<=count;i++){ //找入度与出度为0的点
if(!indegree[i]) inzero++;
if(!outdegree[i]) outzero++;
} if(count==1) //只有1个结点要特判
printf("1\n0\n");
else
printf("%d\n%d\n",inzero,max(inzero,outzero));
} int main(){
int i,a;
while(~scanf("%d",&n)){
init();
for(i=1;i<=n;i++){
while(scanf("%d",&a) && a) map[i][a]=1;
}
for(i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
output();
}
return 0;
}

正确代码邻接表

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( belong[i]!=belong[ edge[j].to ] )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}

Network of Schools(强连通分量缩点(邻接表&矩阵))的更多相关文章

  1. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  2. POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度

    题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  3. Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13801   Accepted: 55 ...

  4. POJ 1236 Network of Schools (强连通分量缩点求度数)

    题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...

  5. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  6. poj-1236.network of schools(强连通分量 + 图的入度出度)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27121   Accepted: 10 ...

  7. [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)

    nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. --------- ...

  8. POJ1236 Network of Schools (强连通分量,注意边界)

    A number of schools are connected to a computer network. Agreements have been developed among those ...

  9. 【强连通分量缩点】poj 1236 Network of Schools

    poj.org/problem?id=1236 [题意] 给定一个有向图,求: (1)至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点 (2)至少要加多少条边,才能使得从任何一个顶点出发,都 ...

随机推荐

  1. nginx linux 下开机自动启动

    这里使用的是编写shell脚本的方式来处理 vi /etc/init.d/nginx  (输入下面的代码) #!/bin/bash# nginx Startup script for the Ngin ...

  2. 程序员书单_HTML篇

    JavaScript权威指南(第六版) http://download.csdn.net/detail/shenzhq1980/9137733 改善JavaScript程序的188个建议 http:/ ...

  3. Python(迭代器 生成器 装饰器 递归 斐波那契数列)

    1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...

  4. android学习笔记32——资源

    Android应用资源 资源分类: 1.无法直接访问的原生资源,保存于asset目录下 2.可通过R资源清单类访问的资源,保存于res目录下 资源的类型以及存储方式 android要求在res目录下用 ...

  5. 黄聪:WordPress根目录(Root)

    index.php:WordPress核心索引文件,即博客输出文件. license.txt:WordPress GPL许可证文件. my-hacks.php:定义了博客输出之前处理的追加程序.默认安 ...

  6. 黄聪:C#图像处理(各种旋转、改变大小、柔化、锐化、雾化、底片、浮雕、黑白、滤镜效果) (转)

    一.各种旋转.改变大小 注意:先要添加画图相关的using引用. //向右旋转图像90°代码如下:private void Form1_Paint(object sender, System.Wind ...

  7. (C# 基础) Datatable

    增加一行: DataTable measurements = new DataTable(); measurements.Columns.Add("StationTestName" ...

  8. C#动态调用C++编写的DLL函数

    C#动态调用C++编写的DLL函数 动态加载DLL需要使用Windows API函数:LoadLibrary.GetProcAddress以及FreeLibrary.我们可以使用DllImport在C ...

  9. 获取OpenCV中RotatedRect的绝对角度

    opencv中RotatedRect的angle这个成员变量总是诡异的不同寻常(http://stackoverflow.com/questions/15956124/minarearect-angl ...

  10. js复习(二)

    一.window.document对象(一)找元素 docunment.getElementById("id"):根据id找,最多找一个: docunment.getElement ...