Network of Schools(强连通分量缩点(邻接表&矩阵))
Description
in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output
Sample Input
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output
1
2
开始用桥来判断是不是同一个连通分量,结果果断错了,其实下图应该就会出错
原因是通过头插法先遍历3,结果3的出度为0,由于2通向3已经访问过,因此不能在访问,因此2-->3的路没有标志cut,没法统计这天边的出入度情况,因此出度为0的变为2个了,正确答案应该是1个,所以错了,不能企图通过桥来算出出度入度
错误代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( edge[j].cut)//belong[i]!=belong[ edge[j].to ])//edge[j].cut )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}
正确代码矩阵:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXV 110
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b) int n,map[MAXV][MAXV],outdegree[MAXV],indegree[MAXV];
int dfn[MAXV]; //第一次访问的步数
int low[MAXV]; //子树中最早的步数
int stap[MAXV],stop; //模拟栈
bool instack[MAXV]; //是否在栈中
int count; //记录连通分量的个数
int cnt; //记录搜索步数
int belong[MAXV]; //属于哪个连通分量 void init(){
count=stop=cnt=0;
memset(instack,false,sizeof(instack));
memset(map,0,sizeof(map));
memset(dfn,0,sizeof(dfn));
} void tarjan(int x){
int i;
dfn[x]=low[x]=++cnt;
stap[stop++]=x;
instack[x]=true;
for(i=1;i<=n;i++){
if(!map[x][i]) continue;
if(!dfn[i]){
tarjan(i);
low[x]=min(low[i],low[x]);
}else if(instack[i])
low[x]=min(dfn[i],low[x]);
//与x相连,但是i已经被访问过,且还在栈中
//用子树节点更新节点第一次出现的时间
} if(low[x]==dfn[x]){
count++;
while(1){
int tmp=stap[--stop];
belong[tmp]=count;
instack[tmp]=false;
if(tmp==x) break;
}
}
} void output(){
int i,j,inzero=0,outzero=0;
for(i=1;i<=n;i++){
indegree[i]=outdegree[i]=0;
}
for(i=1;i<=n;i++) //找连通分量入度与出度
for(j=1;j<=n;j++)
if(map[i][j] && belong[i]!=belong[j]){
indegree[belong[j]]++;
outdegree[belong[i]]++;
}
for(i=1;i<=count;i++){ //找入度与出度为0的点
if(!indegree[i]) inzero++;
if(!outdegree[i]) outzero++;
} if(count==1) //只有1个结点要特判
printf("1\n0\n");
else
printf("%d\n%d\n",inzero,max(inzero,outzero));
} int main(){
int i,a;
while(~scanf("%d",&n)){
init();
for(i=1;i<=n;i++){
while(scanf("%d",&a) && a) map[i][a]=1;
}
for(i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
output();
}
return 0;
}
正确代码邻接表
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( belong[i]!=belong[ edge[j].to ] )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}
Network of Schools(强连通分量缩点(邻接表&矩阵))的更多相关文章
- POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)
Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...
- POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度
题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Tot ...
- Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13801 Accepted: 55 ...
- POJ 1236 Network of Schools (强连通分量缩点求度数)
题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- poj-1236.network of schools(强连通分量 + 图的入度出度)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 27121 Accepted: 10 ...
- [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)
nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. --------- ...
- POJ1236 Network of Schools (强连通分量,注意边界)
A number of schools are connected to a computer network. Agreements have been developed among those ...
- 【强连通分量缩点】poj 1236 Network of Schools
poj.org/problem?id=1236 [题意] 给定一个有向图,求: (1)至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点 (2)至少要加多少条边,才能使得从任何一个顶点出发,都 ...
随机推荐
- Android软键盘遮挡的四种解决方案
问题概述 在编辑框输入内容时会弹出软键盘,而手机屏幕区域有限往往会遮住输入界面,我们先看一下问题效果图: 输入用户名和密码时,系统会弹出键盘,造成系统键盘会挡住文本框的问题,如图所示: 输入密码时输入 ...
- log4j日志的打印
1.加入日志属性文件 log4j.properties log4j.rootLogger=DEBUG,Console,fileout log4j.appender.Console=org.apache ...
- Android Bitmap和Canvas学习笔记 [转]
原文:http://www.cnblogs.com/feisky/archive/2010/01/10/1643460.html 位图是我们开发中最常用的资源,毕竟一个漂亮的界面对用户是最有吸引力的. ...
- iptables基础信息介绍
在linux系统下,网络安全,除了有SElinux,另外就是iptables防火墙了,这个是用的最多也是功能非常强大的一个工具,今天就对其简单的架构上技术进行概要描述.让自己后续能够逻辑清晰的处理云环 ...
- C#限制程序只能运行一個实例 (防多开)
//方法一:只禁止多个进程运行 using System; using System.Collections.Generic; using System.Windows.Forms; namespac ...
- WINRARA 排除 .svn 文件夹
加入-x*\.svn -x*\.svn\* 即可: rar.exe u -m3 -s -r -o+ -x*.db -x*.zip -x*.rar -x*\.svn -x*\.svn\* zmv9net ...
- Redis系统管理相关指令简介
常用命令列表 DBSIZE 返回当前数据库 Key 的数量 INFO ...
- python命令行下tab键补全命令
在python命令行下不能使用tab键将命令进行补全,手动输入又很容易出错. 解决:tab.py #/usr/bin/env python # -*- coding:utf-8 -*- ''' 该模块 ...
- 服务器判断客户端为移动端还是PC端
public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/html&quo ...
- purgeIdleCellConnections: found one to purge conn = 0x1e09f7d0
purgeIdleCellConnections: found one to purge conn = 0x1e09f7d0 你在iOS6下使用3G网络时可能会遇到这条log,不用紧张,这只是苹果的工 ...