这是一道很坑爹的题,一定注意输入的两个数的大小,并且不能简单的交换,因为在最后的输出的时候还需要将原来的数按照原来的顺序和大小,这就是为什么还得开辟两个值得原因

Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known
for all possible inputs.

Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1



It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that
0 < n < 1,000,000 (and, in fact, for many more numbers than this.)



Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.



For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.




Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 10,000 and greater than 0.



You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one
line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174

#include<iostream>

#include <cmath>

using namespace std;

int main ()

{

 int m,n,w,j,i,max;

 while(cin>>m>>n)

 { 

  int x=m,y=n;

  if(m>n)

  { 

  int X=m;

           m=n;

     n=x;

  }

  max=-1;

  for(i=m;i<=n;i++)

  {

   j=i;

   w=0;

   while(j>1)

   {

    if(j%2!=0)

     j=3*j+1;

    else

     j=j/2;

    w++;

    //cout<<'*';

   }

     w++;

     if(max==-1)

      max=w;

     else

      if(max<w)

      max=w;

  }

 cout<<x<<' '<<y<<' '<<max<<endl;

 }

 return 0;

}

第二章 I - The 3n + 1 problem(2.4.2)的更多相关文章

  1. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

  2. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  3. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  4. classnull100 - The 3n + 1 problem

    新手发帖,很多方面都是刚入门,有错误的地方请大家见谅,欢迎批评指正  The 3n + 1 problem  Background Problems in Computer Science are o ...

  5. CentOS 7.4 初次手记:第二章 CentOS安装步骤

    第二章 CentOS安装步骤... 18 第一节 下载... 18 第二节 分区参考... 18 第三节 安装... 19 I Step 1:引导... 19 II Step 2:配置... 20 I ...

  6. Gradle2.0用户指南翻译——第二章. 概述

    翻译项目请关注Github上的地址:https://github.com/msdx/gradledoc本文翻译所在分支:https://github.com/msdx/gradledoc/tree/2 ...

  7. 「学习记录」《数值分析》第二章计算实习题(Python语言)

    在假期利用Python完成了<数值分析>第二章的计算实习题,主要实现了牛顿插值法和三次样条插值,给出了自己的实现与调用Python包的实现--现在能搜到的基本上都是MATLAB版,或者是各 ...

  8. HttpClient学习研究---第二章:连接管理

    第二章.Connection management连接管理2.1. 2.1.Connection persistence连接持久性The process of establishing a conne ...

  9. ASP.NET MVC with Entity Framework and CSS一书翻译系列文章之第二章:利用模型类创建视图、控制器和数据库

    在这一章中,我们将直接进入项目,并且为产品和分类添加一些基本的模型类.我们将在Entity Framework的代码优先模式下,利用这些模型类创建一个数据库.我们还将学习如何在代码中创建数据库上下文类 ...

随机推荐

  1. js和css内联外联注意事项

    简单说:这两个问题其实是同一个问题,但是网上找了好久也找不到方法,外联的js和css文件里不能有任何HTML的标记注释,一旦有,浏览器就疯了!一去掉就好了!!! 问题:起因是网上看到一个css的表格样 ...

  2. ASP.NET 4.0的ClientIDMode属性

    时光流逝,我们心爱的ASP.NET也步入了4.0的时代,微软在ASP.NET 4.0中对很多特性做了修改.比如我将要讨论的控件ID机制就是其中之一. 在ASP.NET 4.0之前我们总是要为控件的Cl ...

  3. 虚拟机IP设置

    实验软件环境:虚拟机Vmware Workstation10.0 .CentOS 6.5 32位 1.自动获取IP地址 虚拟机使用桥接模式,相当于连接到物理机的网络里,物理机网络有DHCP服务器自动分 ...

  4. Silverlight开源框架SL提供便捷的二次开发银光框架

    Silverlight开发框架SilverFrame欢迎咨询 基于Silverlight4.0开发,兼容Silverlight 5.0,SQLServer2005数据库.WCF: 本框架有清爽的前端界 ...

  5. IntelliJ IDEA以不同格式导出数据库的数据

    在数据表内容上点击右键,弹出窗口中先选择Data Extractor SQL Inserts,二级菜单会列出导出数据的类型,这里选择SQL Inserts 然后选择Dump Data菜单中的To Fi ...

  6. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  7. 204. Count Primes

    Description: Count the number of prime numbers less than a non-negative number, n. ============= 找质数 ...

  8. 黄聪:wordpress如何扩展TinyMCE编辑器,添加自定义按钮及功能

    在functions.php文件里面添加: add_action( 'admin_init', 'my_tinymce_button' ); function my_tinymce_button() ...

  9. *.hbm.xml讲解

    <!-- package声明pojo类所在的包,如果不写 那么在class中需要指明pojo类所在的包 schema指数据库模式 一个模式下可以有多张表 --> <hibernate ...

  10. Builder模式(建造者模式)

    在设计模式中对Builder模式的定义是用于构建复杂对象的一种模式,所构建的对象往往需要多步初始化或赋值才能完成.那么,在实际的开发过程中,我们哪些地方适合用到Builder模式呢?其中使用Build ...