In this chapter we will study the family of linear predictors, one of the most useful families of hypothesis classes. Many learning algorithms that are being widely used in practice rely on linear predictors, first and foremost because of the ability to learn them efficiently in many cases. In addition, linear predictors are intuitive, are easy to interpret, and fit the data reasonably well in many natural learning problems.

We will introduce several hypothesis classes belonging to this family – halfspaces, linear regression predictors, and logistic regression predictors – and present relevant learning algorithms: linear programming and the Perceptron algorithm for the class of halfspaces and the Least Squares algorithm for linear regression. This chapter is focused on learning linear predictors using the ERM approach; however, in later chapters we will see alternative paradigms for leaning these hypothesis classes.

First, we define the class of affine functions as

where

It will be convenient also to use the notation

which reads as follows:

The different hypothesis classes of linear predictors are compositions of a function

It may be more convenient to incorporate

It follows that each affine function in

Linear Predictors的更多相关文章

  1. kaggle入门2——改进特征

    1:改进我们的特征 在上一个任务中,我们完成了我们在Kaggle上一个机器学习比赛的第一个比赛提交泰坦尼克号:灾难中的机器学习. 可是我们提交的分数并不是非常高.有三种主要的方法可以让我们能够提高他: ...

  2. A Statistical View of Deep Learning (I): Recursive GLMs

    A Statistical View of Deep Learning (I): Recursive GLMs Deep learningand the use of deep neural netw ...

  3. py-faster-rcnn 训练参数修改(转)

    faster rcnn默认有三种网络模型 ZF(小).VGG_CNN_M_1024(中).VGG16 (大) 训练图片大小为500*500,类别数1. 一. 修改VGG_CNN_M_1024模型配置文 ...

  4. Improving your submission -- Kaggle Competitions

    1: Improving Our Features In the last mission, we made our first submission to Titanic: Machine Lear ...

  5. py-faster-rcnn代码阅读2-config.py

    简介  该文件指定了用于fast rcnn训练的默认config选项,不能随意更改,如需更改,应当用yaml再写一个config_file,然后使用cfg_from_file(filename)导入以 ...

  6. kaggle 泰坦尼克号问题总结

    学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. ...

  7. 使用scikit-learn进行建模预测和评估操作_泰坦尼克号获救预测

    # coding: utf-8 # In[142]: import pandas as pd import numpy as np import matplotlib.pyplot as plt # ...

  8. Kaggle入门——泰坦尼克号生还者预测

    前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一 ...

  9. 深度学习论文翻译解析(八):Rich feature hierarchies for accurate object detection and semantic segmentation

    论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构 ...

随机推荐

  1. ajax请求超时时间

    http://www.cnblogs.com/charling/p/3356216.html get post 请求 http://www.cnblogs.com/oneword/archive/20 ...

  2. localhost访问不了

    安装phpstudy后,localhost访问不了,在忙了很久之后,我吧virtualbox卸载了,把百度云也卸载了,然后就可以了,可能是因为公司的网络限制比较多,但百度云也太肯了, 也是看别人装了, ...

  3. phalcon: 表单

    以实例为说明: controller <?php use \Phalcon\Forms\Form; use \Phalcon\Forms\Element\Text; use \Phalcon\F ...

  4. 项目解析- JspLibrary - part2

    banner.jsp 验证用户是否登录 <%String manager=(String)session.getAttribute("manager"); //验证用户是否登 ...

  5. javaweb2 URL(查找的过程)

    URL: 全名叫统一资源定位符,用于定位互联网的资源. 问题:接上(javaweb1 tomcat)http://localhost:8080/myweb/test.html 分析:http://-- ...

  6. VBA中四种自动运行的宏以及模块的含义

    在Excel的“标准模块”中可以创建4种自动运行的宏,它们分别是Auto_Open(打开工作 簿时自动运行), Auto_Close, Auto_Activate,  Auto_Deactivate. ...

  7. easyui的基本用法

    之前有用过extjs,最近发现easyui和fineui和extjs比较类似,并且稍微简单一点,所以考虑使用. 以下是项目中的具体简单应用 function callback2d(data) {//d ...

  8. IFE 百度前端技术学院 2016年春季班作业 第一阶段任务(1-4)的总结

    具体任务详细介绍可参考http://ife.baidu.com/task/all 具体代码参考:https://github.com/sunshineqt/webxt/tree/master/stag ...

  9. 修改Window的hosts文件提示“该文件被其他程序占用”解决方案

    1.打开C:\Windows\System32\drivers\etc中的hosts 2.右键——>属性——>安全 3.在修改保存就可以了

  10. SQL语句技巧(上个样式太差了)

      以下并非本人整理,但是看后感觉相当不错,特此分享. 1.应用程序中,保证在实现功能的基础上,尽量减少对数据库的访问次数:通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担:能够分 ...