Network

Time limit: 1.0 second
Memory limit: 64 MB
Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem - not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

Input

The first line contains two integer: N - the number of hubs in the network (2 ≤ N ≤ 1000) and M — the number of possible hub connections (1 ≤ M ≤ 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample

input output
4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1
1
4
1 2
1 3
2 3
3 4
Problem Author: Andrew Stankevich

题意:

给定几个需要链接的点以及能够利用的边,要求用这些变将所有的点都链接起来,且所用边长的最大值尽量小。

思路:

起初,看题意是最小生成树,但题目所给的样例,并不是最小生成树的结果,纠结半天,然后又看了几遍题目,还是不知所云,最后试着把模版敲上去,submit~~

然后便ac了,

后来问了才知道,这道题确实最小生成树,不过只要所用边的最大值不变,那些权值小的边可以任意加上去,因为题目只是对最大边最小有要求,对边的数量没有要求。

#include <stdio.h>
#include <string.h>
#include <cmath>
#include <iostream>
#include <stack>
#include <queue>
#include <algorithm>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int n,m,k,s,t,tot,sum=,maxn=;
int head[N],vis[N],dis[N],father[N];
int dfn[N],low[N],stack1[N],num[N],in[N],out[N];
struct man{
int u,v,val,used;
}edg[M];
bool cmp(man f,man g){
return f.val<g.val;
}
int find(int x){
if(father[x]!=x)father[x]=find(father[x]);
return father[x];
}
void Union(int x,int y){
x=find(x);y=find(y);
if(x!=y)father[y]=x;
return;
}
void kruskal(){
for(int i=;i<=m;i++){
int u=edg[i].u,v=edg[i].v;
if(find(u)==find(v))continue;
Union(u,v);
sum++;edg[i].used=;
maxn=edg[i].val;
if(sum==n-)return;
}
}
int main() {
int u,v,val;tot=;met(dfn,);met(vis,);met(head,-);
for(int i=;i<N;i++)father[i]=i;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&val);
edg[i].u=u;edg[i].v=v;edg[i].val=val;edg[i].used=;
}
sort(edg+,edg+m+,cmp);
kruskal();
printf("%d\n%d\n",maxn,sum);
for(int i=;i<=m;i++){
if(edg[i].used){
printf("%d %d\n",edg[i].u,edg[i].v);
}
}
return ;
}

URAL 1160 Network(最小生成树)的更多相关文章

  1. 1160. Network(最小生成树)

    1160 算是模版了 没什么限制 结束输出就行了 #include <iostream> #include<cstdio> #include<cstring> #i ...

  2. [poj2349]Arctic Network(最小生成树+贪心)

    Arctic Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17758   Accepted: 5646 D ...

  3. BZOJ 3732: Network 最小生成树 倍增

    3732: Network 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 &l ...

  4. POJ 2349 Arctic Network (最小生成树)

    Arctic Network Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  5. ZOJ1586——QS Network(最小生成树)

    QS Network DescriptionIn the planet w-503 of galaxy cgb, there is a kind of intelligent creature nam ...

  6. TZOJ 2415 Arctic Network(最小生成树第k小边)

    描述 The Department of National Defence (DND) wishes to connect several northern outposts by a wireles ...

  7. ZOJ1586:QS Network (最小生成树)

    QS Network 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1586 Description: In th ...

  8. poj2349 Arctic Network - 最小生成树

    2017-08-04 16:19:13 writer:pprp 题意如下: Description The Department of National Defence (DND) wishes to ...

  9. POJ-1861,Network,最小生成树水题,,注意题面输出有问题,不必理会~~

    Network Time Limit: 1000MS   Memory Limit: 30000K          Special Judge http://poj.org/problem?id=1 ...

随机推荐

  1. JSON.parse()和eval()区别

    JSON.parse()只会将标准的Json字符串(key和value都由双引号引起来,最外面用单引号括住)转为JSON对象. eval()在转换字符串的时候是比较松的,即使不是标准的Json字符串也 ...

  2. Python开发入门与实战1-开发环境

    1.搭建Python Django开发环境 1.1.Python运行环境安装 Python官网:http://www.python.org/ Python最新源码,二进制文档,新闻资讯等可以在Pyth ...

  3. 《java作业》

    /* 2.编写一个类,该类有一个方法public int f(int a,int b), 该方法返回a和b的最大公约数.然后再编写一个该类的子类, 要求子类重写方法f,而且重写的方法将返回a和b的最小 ...

  4. iOS对象序列化

    系统对象的归档我就不介绍了,这个不复杂,自己看一下就会了. 我在这里主要介绍自定义对象的归档. Sample.h文件 // //  Sample.h //  Serialization // //   ...

  5. xml文件有误

    Unable to start activity ComponentInfo{com.anzi.jmsht.scripturelibrary/com.anzi.jmsht.scripturelibra ...

  6. Emacs+highlight-parentheses高亮括号

    EmacsWiki上关于它的介绍HighlightParentheses,下载最新版请通过作者的GitHub:https://github.com/nschum/highlight-parenthes ...

  7. c++回调函数 callback

    C++中实现回调机制的几种方式 (1)Callback方式Callback的本质是设置一个函数指针进去,然后在需要需要触发某个事件时调用该方法, 比如Windows的窗口消息处理函数就是这种类型.比如 ...

  8. SQL基础2

    create database fuxi --创建一个名为“fuxi”的数据库go                   --连接语句use fuxi   --使用名为“fuxi”的数据库gocreat ...

  9. 【转】Entity Systems

    “Favour composition over inheritance” If you haven’t already read my previous post on the problems o ...

  10. eval函数的工作原理

    如果您想详细了解eval和JSON请参考以下链接: eval  :https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Glob ...