Careercup - Google面试题 - 4877486110277632
2014-05-08 05:16
原题:
Given a circle with N defined points and a point M outside the circle, find the point that is closest to M among the set of N. O(LogN)
题目:给定一个圆上的N个点,和一个在这个圆外部的点。请找出这N个点中与外部点最近的那个。要求时间复杂度是对数级的。
解法1:这位“Guy”老兄又出了一道莫名奇妙的题:1. 这些点是等距离的吗?2. 这些点是顺时针还是逆时针排列的?在没有比较清楚思路的情况下,我只写了个O(n)枚举的算法。
代码:
// http://www.careercup.com/question?id=4877486110277632
#include <cmath>
#include <iostream>
#include <vector>
using namespace std; struct Point {
double x;
double y;
Point(double _x = , double _y = ): x(_x), y(_y) {};
}; double dist(const Point &p1, const Point &p2)
{
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
} int main()
{
int i, n;
Point pout;
vector<Point> vp;
int min_i;
double d, min_d; while (cin >> n && n > ) {
vp.resize(n);
for (i = ; i < n; ++i) {
cin >> vp[i].x >> vp[i].y;
}
cin >> pout.x >> pout.y; min_i = ;
min_d = dist(pout, vp[]);
for (i = ; i < n; ++i) {
d = dist(pout, vp[i]);
min_i = d < min_d ? i : min_i;
}
cout << '(' << vp[min_i].x << ',' << vp[min_i].y << ')' << endl;
cout << min_d << endl;
vp.clear();
} return ;
}
解法2:实际上这题不但有对数级算法,还有常数级算法。但有一个额外条件需要满足:我得知道圆心在哪儿。计算圆心需要把所有点的坐标求平均值,那样的算法复杂度还是线性的。如果我们定义P[i]为圆上的那N个点,O为圆心,M为圆外的那个点。那么我们连接OP[i]与OM,可以发现OM与OP[i]的夹角分布是循环有序的(参见Leetcode里面的Rotated Sorted Array),条件是这N个点呈顺时针或逆时针分布。你可以通过二分得到距离最小的结果,但更快的算法是常数级的。你只要计算一个夹角,就知道所有的了。因为这些夹角是个等差数列。比如四个点中,有一个的夹角是73°,那么另外三个肯定是163°、107°(253°)、17°(343°)。谁的距离最短呢?角度最小的就是了,注意优角要换算成锐角或钝角。想要通过一次计算就解决问题,用除法和取模的思想吧。此处的代码默认点是按照顺时针排列的,否则为了判断哪个方向,又得进行一些计算。那样的话,代码都乱的看不清楚了。
代码:
// http://www.careercup.com/question?id=4877486110277632
#include <cmath>
#include <iostream>
#include <vector>
using namespace std; struct Point {
double x;
double y;
Point(double _x = , double _y = ): x(_x), y(_y) {}; Point operator - (const Point &other) {
return Point(x - other.x, y - other.y);
}; Point operator + (const Point &other) {
return Point(x + other.x, y + other.y);
}; double operator * (const Point &other) {
return x * other.x + y * other.y;
};
}; double dist(const Point &p1, const Point &p2)
{
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
} int main()
{
int i, n;
Point pout;
vector<Point> vp;
Point center;
Point v0, vout;
// the angle between OM and a line of center
double angle;
// 2 * pi / n
double side_angle;
const double pi = 3.1415926;
double d; while (cin >> n && n > ) {
vp.resize(n);
for (i = ; i < n; ++i) {
cin >> vp[i].x >> vp[i].y; }
cin >> center.x >> center.y;
cin >> pout.x >> pout.y; v0 = vp[] - center;
vout = pout - center; side_angle = * pi / n;
angle = arccos((v0 * vout) / (dist(vp[], center) * dist(pout, center)));
d = angle / side_angle;
// Here I assume the points are arranged in clockwise order.
i = d - floor(d) < 0.5 ? floor(d) : floor(d) + ;
cout << vp[i].x << ' ' << vp[i].y << endl; vp.clear();
} return ;
}
Careercup - Google面试题 - 4877486110277632的更多相关文章
- Careercup - Google面试题 - 5732809947742208
2014-05-03 22:10 题目链接 原题: Given a dictionary, and a list of letters ( or consider as a string), find ...
- Careercup - Google面试题 - 5085331422445568
2014-05-08 23:45 题目链接 原题: How would you use Dijkstra's algorithm to solve travel salesman problem, w ...
- Careercup - Google面试题 - 4847954317803520
2014-05-08 21:33 题目链接 原题: largest number that an int variable can fit given a memory of certain size ...
- Careercup - Google面试题 - 6332750214725632
2014-05-06 10:18 题目链接 原题: Given a ,) (,) (,), (,) should be returned. Some suggest to use Interval T ...
- Careercup - Google面试题 - 5634470967246848
2014-05-06 07:11 题目链接 原题: Find a shortest path ,) to (N,N), assume is destination, use memorization ...
- Careercup - Google面试题 - 5680330589601792
2014-05-08 23:18 题目链接 原题: If you have data coming in rapid succession what is the best way of dealin ...
- Careercup - Google面试题 - 5424071030341632
2014-05-08 22:55 题目链接 原题: Given a list of strings. Produce a list of the longest common suffixes. If ...
- Careercup - Google面试题 - 5377673471721472
2014-05-08 22:42 题目链接 原题: How would you split a search query across multiple machines? 题目:如何把一个搜索que ...
- Careercup - Google面试题 - 6331648220069888
2014-05-08 22:27 题目链接 原题: What's the tracking algorithm of nearest location to some friends that are ...
随机推荐
- 标准的CSS盒子模型?与低版本IE的盒子模型有什么不同的?
CSS盒子模型:由四个属性组成的外边距(margin).内边距(padding).边界(border).内容区(width和height); 标准的CSS盒子模型和低端IE CSS盒子模型不同:宽高不 ...
- 软件工程 speedsnail 第二次冲刺3
20150520 完成任务:划线第三天,能画出一条直黄线且与蜗牛共存: 遇到问题: 问题1 碰撞检测有缺陷 解决1 没有解决 明日任务: 实现蜗牛与线的碰撞
- Run JavaScript on your PeopleSoft pages conditionally
Here, PeopleCode sets the logic that determines when the JavaScript code will run. This is not as si ...
- winform 自定义控件以及委托事件的使用
源代码:http://files.cnblogs.com/files/qtiger/%E8%AE%A1%E7%AE%97%E5%99%A8%E5%AE%89%E8%A3%85%E5%8C%85%E4% ...
- SQL中补0
SQL中补0 编写人:CC阿爸 2014-3-14 第一种方法: right('00000'+cast(@count as varchar),5) 其中'00000'的个数为right函数的最后参数 ...
- CentOS用户权限管理--su与sudo
Linux权限管理--su与sudo 1.su用来切换登录的用户,比如当前用户为chen,可以用su zhu,并输入用户zhu的登录密码,就可以切换到用户zhu.如果一个普通用户想切换到root用户, ...
- 在xml中添加array
在values建立arrays(名字可自定义)的xml: <?xml version="1.0" encoding="utf-8"?> <re ...
- Eclipse之Failed to load the JNI shared library”……\jvm.dll”的解决方案
问题描述:java环境变量配置完全正确,但是运行eclipse时提示:Failed to load the JNI shared library " xxx\jva.dll" 原因 ...
- Toast提示信息
用Toast来作为操作成功以及用户误操作等等的提示,非常的简单.直接上代码: 创建方式一: ps: 此处没有设置toast的其他属性,均使用默认的风格(个人觉得默认的风格除了字体比较小之外 还是挺好看 ...
- about the pageload and page init event
Page_Init The Page_Init event is the first to occur when an ASP.NET page is executed. This is where ...