UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers
An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field
in computer science, and that life would not matter at all without cryptography.
Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. ´
Some of the cryptographic algorithms he is implementing make use of big prime numbers. However,checking if a big number is prime is not so easy. An exhaustive approach can require the division of the number by all the prime numbers smaller or equal than its
square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.
However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.
Let a be a random number between 2 and n−1 (being n the number whose primality we are testing).Then, n is probably prime if the following equation holds: a^n mod n = a
If a number passes the Fermat test several times then it is prime with a high probability.Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael
numbers.In this problem you are asked to write a program to test if a given number is a Carmichael number.Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella. As a side note, we need to mention that,
according to Alvaro, the main advantage of encrypted ´paella over conventional paella is that nobody but you knows what you are eating.
Input
The input will consist of a series of lines, each containing a small positive number n (2 < n < 65000).A number n = 0 will mark the end of the input, and must not be processed.
Output
For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.
Sample Input
1729
17
561
1109
431
0
Sample Output
The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.
迷失在幽谷中的鸟儿,独自飞翔在这偌大的天地间,却不知自己该飞往何方……
#include <iostream>
using namespace std;
int prime[65000];
long long powmod(int a,int n,int m)
{
if (n==1)return a%m;
long long x=powmod(a,n/2,m);
x=(x*x)%m;
if (n%2)x=(x*a)%m;
return x;
}
int tests(int n)
{
for (int i=2; i<n; ++i)
if (powmod(i,n,n)!=i)
return 0;
return 1;
}
int main()
{
for (int i =0; i<65000; ++i)
prime[i]=1;
for (int i=2; i<65000; ++i)
if (prime[i])
for (int j=2*i; j<65000; j+=i)
prime[j]=0;
int n;
while(cin>>n&&n)
if(!prime[n]&&tests(n))
cout<< "The number "<<n<<" is a Carmichael number."<<endl;
else cout<<n<<" is normal."<<endl;
return 0;
}
UVa 10006 - Carmichael Numbers的更多相关文章
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- Uva 10006 Carmichael Numbers (快速幂)
题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...
- 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
- UVA10006 - Carmichael Numbers
题目链接:UVA10006 本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了. Some numbers that are not prime ...
- Carmichael Numbers - PC110702
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10006.html 原创:Carm ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
- UVA - 13022 Sheldon Numbers(位运算)
UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...
- UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)
UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...
随机推荐
- linux I/O
一) I/O调度程序的总结 1) 当向设备写入数据块或是从设备读出数据块时,请求都被安置在一个队列中等待完成. 2) 每个块设备都有它自己的队列. 3) I/O调度程序负责维护 ...
- Java 函数参数传递方式详解 分类: Java Game 2014-08-15 06:34 82人阅读 评论(0) 收藏
转:http://zzproc.iteye.com/blog/1328591 在阅读本文之前,根据自己的经验和理解,大家可以先思考并选择一下Java函数的参数传递方式: A. 是按值传递的? B. ...
- extjs4 与 kindeditor
<link rel="stylesheet" href="<?php echo Yii::app()->request->baseUrl;?> ...
- 使用css3伪元素制作时间轴并且实现鼠标选中高亮效果
利用css3来制作时间轴的知识要点:伪元素,以及如何在伪元素上添加锚伪类 1)::before 在元素之前添加内容. 2)::after 在元素之后添加内容. 提示:亦可写成 :before :aft ...
- CSS兼容问题大全
1.chorme 最小字体的兼容性. 问题描述:ff和IE最小字体可设置为1px,可是chorme中文版最小字体是12px,小于12px的字体全部显示为12px.解决方案:chorme支持CSS3的, ...
- Swift 2.0 到底「新」在哪?
[编者按]2015年6月,一年一度的苹果 WWDC 大会如期而至,在大会上苹果发布了 Swift 2.0,引入了很多新的特性,以帮助开发者更快.更简单地构建应用.本篇文章作者是 Maxime defa ...
- B树、B-树、B+树、B*树---转载
B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B ...
- zoj 3513 Human or Pig 博弈论
思路:P态的所有后继全为H态,第一个格子为P态,第一行和第一列为H态. 代码如下: #include<iostream> #include<cstdio> #include&l ...
- 机器学习之多变量线性回归(Linear Regression with multiple variables)
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...
- C# 任意类型数据转JSON格式
/// <summary> /// List转成json /// </summary> /// <typeparam name="T">< ...