POJ3321 Apple Tree (树状数组)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 16180 | Accepted: 4836 |
Description
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.
The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.
The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?
Input
The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"C x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"Q x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning
Output
Sample Input
3
1 2
1 3
3
Q 1
C 2
Q 1
Sample Output
3
2
题目大意级是说,给你一颗树,最初每个节点上都有一个苹果,有两种操作:修改(即修改某一个节点,修改时这一个节点苹果从有到无,或从无到有)和查询(查询某一个节点他的子树上有多少个苹果)。
由于此题数据比较大(N<=10^5),而且不是标准的二叉树,所以这里我们队每一个节点重新编号,另外为每一个节点赋一个左值和一个右值,表示这个节点的管辖范围。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAv8AAAEBCAIAAABg6V2BAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACajSURBVHhe7d0/rutGtsXhHsgL3yicdNoDMRx4Hk5u1GN4gQGnHXgAxgWcdGTAUcOBYcDoxIaDBm7Qgd8+p5YoapGU+KdIVrF+H1bgq10SyWJR2kfSOf7LnwAAAC2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+9nV71/97Z9/fc/n33zSbQAA4FR0Pzv45dfPb01PF7ofAAAKQfezA7ofVIw3LAFcH93PDt66nx+//iX+69PXX/JCghrQsgNoCd3Pruh+UAm6H2AHv/3P//ajW1EAup9d0f2gErxhCWRlfU8/GoFT0f3sihcSVIdFC2xl7c4wGofz0P3sihcSVCfbouXpHm2ylT8VjcZJ6H52RfeD6mRYtPYs349GAGfa8RcbbcE/j+6DM9D97IruB9XZumjt+X0YjQMOdshX+221P4/ugzPQ/eyK7gfV2bRo7cl9KhoNHGn/7sfW+ZzonmfoJkH/bgzdz66WvZCUc1WgYeu7H1vAz6P7AIfZ/xcbh4vcbhkm3fF46fC76NaW0P3sau41ZtdDPxoBHITuB5dH90P3Q/ezi/tX6kby5a8/a5jYxTCMxgFHWPnCYIt2TnRP4Gh0P3Q/dD+7WND92JUwFY0Gdpen+xneMky6I3C4g7qfOdE9D5cOv4tubQndzx7mdj92GTyP7gPsYtkblkPD5Wq3DJPuCByu4u7n529+vF+Yb/npoyrLPD7IW1RoBt3PmewyeB7dB9gF3Q/asVf3E2yRP4/uM9foRZq+x73M4EHeoloz6H5OY5fBnOieQH6Zu5850T2Bo9XY/UxdoXQ/K9H9nGZ4Gdgtw6Q7AgWytTonuidwtB27n2Dr/El0hxk+fri3Kf19/viB7mclup/TDC8Du2WYdEegTLZcn0f3AU5Qyns/Ed3tud7facyyw+mhLKo1g+7nNMNrwG4ZJt0RKJMt1+fRfYATVPat5/s3nWd8Bj2HHu0xqjWD7uc0dg3Mie4JlMpW7JPoDsBxtn657Tlb4aMZHZbu/kT3sdd7r9Y/imy/8BVRrRl0P6exC2BOdE+gSLZcX0Z3Aw5ydPejwoANi6gw7v5O1VffDP9XZYu/9/N494doRBvoft7YCkhRbU92ATyP7gMUyZbrnOiewEF27H5sbUdUGGMjIyqMu3c/41m45373XjSiDXQ/Zy4FuwCeR/cBymNrdTSjw9LdgarZqo6oMM3GR1QY0e9+7u/09H4LbNnbP7d7jUQj2kD3c/JSsAvgSXQHoDy2ViMqDNiwiApAnWw9p6j2lN0looKb+o5291YW3c8adD/VvPcT0d2AktgqjagwxkZGVADqZOs5osIrdq+ICgPd73w9dD/3X4On+1mD7ue0pWDrfk50T6AYtkQjKkyz8REVgNrYSo6oMI/dN6KC+f6n26vS6Cdfy37z63avkWhEG+h+zlkKtuJHMzos3R0ogS3OFNWesrtEVADqYWs4osIS9ggRFR48++Lz0j9ZZHe3aFAD6H5K6X5UGLBhERWAs9nKjKjwit0rogJQCVvAKaotYY8QUcFN/MLah99Vn8fuPnpLI+h+Tuh+bK1HVBhjIyMqAKeyZRlRYR67b0QFoAa2eiMqLGePE1FhoP9/+1r6dZ+kd/e3jN7SCLqfo7sfW+URFabZ+IgKwElsQUZUWMIeIaICUDZbtxEV1sr7aE8MX+OGtzSC7ufQ7seWeIpqT9ldIioAh7OlmKLaEvYIERWAgtmijaiwgT1gRIXchq9xw1saQfdzcvejwit2r4gKwOFsKUZUWM4eJ6ICUCRbrimqbWOPGVEhq+Fr3PCWRtD9HNf92MqOqDCP3TeiAnAgW4QRFdbK+2jAfmytpqi2mT1sRIWshq9xw1saQfdzUPdjyzqiwhL2CBEVgEPY8ouosIE9YEQFoDC2UCMqZGIPHlEhE3uBi4zenm68PLqfI7ofW9Apqi1hjxBRAdifrb0U1baxx4yoABTDlmhEhaxsExEVcrAXuMjUjS2g+zmn+1FhOXuciArAnmzVpai2mT1sRAWgDLY+IyrkZluJqJCDvcBNRaOvju5n9+7HlnJEhbXyPhowh626iAqZ2INHVADOZiszRbUd2IYiKmxmL3BT0eiro/vZt/uxRRxRYQN7wIgKwD5svUVUyMo2EVEBOJUty4gKu7HNRVTYxl7gpqLRV0f3s2P3Y8s3RbVt7DEjKgC52UqLqJCbbSWiAnAeW5MRFfZkW4yosJm9xg2jcQ2g+9mr+7G1m6LaZvawERWArGyZpai2A9tQRAXgDLYaIyrsz7YbUWEze5nrRyPaQPdzXPejQib24BEVgHxsjUVU2I1tLqICcCxbhymqHcI2HVFhG3uZ60cj2kD3s8tSsCUbUSEr20REBSAHW10RFfZkW4yoABzL1mFEhaPY1iMqbGMvc/1oRBvofvIvBVuvERVys61EVAA2s6UVUWF/tt2ICsBRbAVGVDiW7UNEhQ3sZa4fjWgD3U/mpWArNUW1HdiGIioAG9iiSlHtELbpiArA/mztRVQ4g+1JRIW17GWuH41oA93P7t2PCruxzUVUANayFRVR4Si29YgKwM5s4aWodgbbk4gKa9nLXD8a0Qa6n5xLwdZoRIU92RYjKgCr2HKKqHAs24eICsBubMmlqHYe25+ICqvYy1w/GtEGup9sS8FWZ0SF/dl2IyoAC9lCiqhwBtuTiArAPmy9RVQ4W8a9spe5fjSiDXQ/eZaCLc0U1Q5hm46oAMxmSyhFtTPYnkRUAHZgiy2iQgFsxyIqLGcvc/1oRBta737s3I9GQ5+ydRlR4Si29YgKwDy2flJUO4/tT0QFICtbZhEVimG7F1FhIXuB60cj2tB092MnfioaPc1WZESFY9k+RFQAZrDFE1HhbGXuFa7E1liKasWw3YuosJC9wPWjEW2g+3kdjZ5gyzGiwhlsTyIqAE/ZsomoUADbsYgKQCa2wCIqFMZ2MqLCEvYC149GtIHu53U0eowtxBTVzmB7ElEBmGZrJqJCMWz3IioAm9nSiqhQJNvViAqz2QtcPxrRBrqfkRM/dbuxJZii2nlsfyIqAGNstaSoVgzbvYgKwDa2riIqlMr2NqLCbPYC149GtIFvPfu5t1siaeSQLcGICmcrc69QJlstERUKYzsZUQFYy1ZUimoFsx2OqDCPvcD1oxFtoPvxcz+8ZZQtvogKBbAdi6gAPLJ1ElGhSLarERWAVWw5RVQonu12RIUZ7DWuH41oA92Pn/vhLUO27CIqFMN2L6ICcGMrJKJCqWxvIyoAy9laiqhQA9vziAoz2GtcPxrRBrofP/fDW4ytuRTVimG7F1EBeGfLI0W1gtkOR1QAlrBVFFGhHrb/ERVesde4fjSiDXQ/fu6HtxhbcBEVCmM7GVEBqHl52G5HVADmsfWTolpV7BAiKjxlr3H9aEQb6H783A9v6bOlFlGhSLarERXQNlsVERVqYHseUQGYwRZPimq1saOIqPCUvcb1oxFtoPvxcz+8pWPrLKJCqWxvIyqgYbYkIirUw/Y/ogLwiq2ciAp1smOJqDDNXuP60Yg2tN79BDv9/WjEO1thKaoVzHY4ogKaZIshRbWq2CFEVACm2ZqJqFAzO6KIChPsZa4fjWgD3c/67keF4tluR1RAY2wZpKhWGzuKiArABFswERUqZwcVUWGCvcz1oxFtoPuZtRRsbUVUqIHteUQFNMaWQUSFOtmxRFQABmyppKhWPzuuiApj7GWuH41oA93P66VgqyqSbq+I7X9EBTTDFkBEhZrZEUVUAB7ZOomocBV2dBEVBuxlrh+NaAPdz4ulYOspJd2xLnYIERXQADv1ERUqZwcVUQHosUUSUeFC7AAjKoyxV7oU1ZpB9/Os+7HFlKK71caOIqICrs7Oe4pq9bPjiqgAvLPlEVHhcuwwIypgDN3Psu5H96mTHUtEBVyanfSICldhRxdRAc2zhZGi2hW1c6Tb0f28saYnxZZRRKNrZkcUUQEXZac7osKF2AFGVEDzbGFEVLgoO9iIChig+3ljfU/KJdeQHVREBVyRneuICpdjhxlRAQ2zJRFR4dLskCMq4BHdzxvre1KuuoDsuCIq4FrsLKeodkXtHCnmsPUQUeHq7KgjKuAR3c8b63tSLrx6+oeWogIuxE5xRIWLsoONqID22EqIqNAGO/aICuih+3ljfU/KhddNd2hdVMBV2PmNqHBpdsgRFdASWwMpqjXDDj+iAm7oft5Y35Ny7RXTXRJdVED97MxGVLg6O+qICmiJrYGICi2xGYiogBu6H7HWJ3L5FdNdFZc/0qbYaY2o0AY79ogKaIOd/YgK7bF5iKiAd3Q/0lrrE7pLoosKqJad0BTVmmGHH1EBV2fnPaJCq2w2IiqA7qcz7H5UuLT+VZGiAupkZzOiQktsBiIq4NLspKeo1iqbjYgKoPtJYk1Y96PC1fWvihQVUCE7lREV2mPzEFEB12VnPKJC22xOIio0j+5Hi6PN7id0l0QXFVAVO4kRFVplsxFRAVdk5zqiAsYmJ0XlVrXe/fSXQoOtT9KfhBQVUAk7fSmqtcpmI6ICLsdOdEQFvLPJsWhQe+h+WApMQvXs9EVUaJvNSUQF1MzOZvfPflIJHZsfiwY1punux1ZARIX22DxEVMBGv/z6ee8T1b/+7cevf1ElFztxERUw/aSvMqpiJ3EqGo0em6JhNK4l7XY/du4jKrTKZiOiAlb6/auHvueez7/5pCGb2SmLqIB3NjkWDUIN7NxNRaPxyGZpGI1rSaPdj534FNVaZbMRUQErTXY/q98BslPT/bOfVELH5seiQSibnbWpaDQe2SxNRaObQffT6IkfZXMSUQFrvHc/X/76s/7555/f/9Q1QEvf/rHzMhWNRo9N0TAah4LZKRuNhmLAJmoqGt2Mkrqf/b8hkdgpj6iA6etEZSzw+9eDFufjh9vy/vC7bprBzsVUNBqPbJaG0TiUys7XVDQaAzZRU9HoZhTS/RzxDYnEzndEBbyzybFoENbqup/5C9tOwVQ0Go9slqai0djV2p9v7WRNRaMxYBM1FY3O7edvfuyd9MhPH1U5Wendz8Z3gOy8dv/sJ5XQsfmxaBDWuK/zr77XTS/Z/I9GQzFgEzUVjcZeNv18aydrKhqNgeFE2S0paXBWo+d9r091liqp+8n0DYnEzutUNBo9NkXDaBwWuv8M1F/qT9nMT0WjMWATNRWNxl42/XxrJ2sqGo2B4UTZLSlpcD5TJ53u50G2b0gkdlKnotF4ZLM0jMZhid7bvwsufpv5qWg0BmyipqLR2Mv6n2/tTEVGb4yk8RiyiZqKRi/RnUT9u+f+Cv54ij9+oPt5ZcU3JBI7o1PRaDyyWZqKRmOe/iff8z/zCjbtU9FoDAwnym5JSYOxm/U/39qZijy/vSjdVT+MRhzF5moYjVvi2RH1vuO17tObAxTb/dzfNFv0ahHspI5GQzFgEzUVjcYMvZ+BFv/QY9M+FY0e+uM/n/3fv//yns9++K9ubMlwouyWlDQYR5rz862dpi6jpXSXWfz71xVEe76WzdUwGrfEkz1c8Sn/8QrtflbPnZ3RqWg0BmyipqLReOHT1192zw6Lf9PB5jwyemMkjR/479//odaH7ud5NBrHef3zrZ2j59F9ZulfldeJDm6azVg/GrHQkx14bG37XwAq5Re+Qondz7pvSCR2Uqei0RiwiZqKRuOZ3jW//LtrweY88vx2868ffutan2a7n2BzNYzG4UBzfr610/Qyutsr/Y+hLxYd4TSbsS4qLzS99Xt/+dU3w7fZ+N7PhP7SXPqZV7CTOhWNxsBwouyWlDQY0178fPnys3Cb8C6jpXSXBz//8d70/PbZ7e2fRd1P2kn9o3I2V8NoHI4y5+dbO0dzons+p29bX7MB0jE+ZZOWotpC01t/9e5aGR+HldX9bPmGRGIndSoajYHhRNktKWkwpm3qfmy2n0f3efDpi/SWz3efvv1ucffT30/dVDmbsX40AkeZ8/OtnaPI1O39pDFP3d6O/fB7tw9XyvsxTj/z9HqO5VM3wh5ft77p78P9pXz763te5XQ//fla+dGgndHI6I2RNB5DNlFT0WhMOq77iehuN7eO549v7/+9svuJ6NbK2Yx1URmHmPP6ZycoRbVXl4YGTbht/e315bYb14kO8qjuxx/8Par19uHxia77MgDdz93Wb0gkdkYjz2/HKJurYTQO+7DZnhPdM9FnXv/+4v2pbmn3o8uwFxXqZ5OWohp2N/fnWztBERXGzB/Z/YWh9IZTrw+rJu+H8VIJ3c/9Hb6H7uf+q3Z0P7Lpp+SOnc4uo6V0F4yyuRpG47ADm+rI1O39pDHvbp95/eM//3r/N92PmZ467Gfuz7d2diIqTJg9+LYDtw6g635mvr6so0OeiAZl1r2ePuswZs/bpP6BdFEt3P+a5X03eh1nEb/5lbn7uR3bPSo8k6H7sXP5PLoPptmM9aMR2IFNdYpqrxZ5GnPrdX77+x/pBrofNzpv2NPcZ3g7NZF0+xM2PqLCo9vr7sgr8a7dzxnK6H6envRC5jxn92NH2EXlSUd3PxHdDdNsxrqojB3YVEdUGDMy8vaZV7/RofsxI/OGfe3Y/YTXd7m9D9F/KaH7eTFpr6TZs6gmvTf8+tnw5Za8Suh+trITOSe6J56ySUtRDbnZPEdUmDAcbH/gZzQveyC7eCMqXMVw3rCzWd2PnZdIuvNLL+815w/8XKgHGp1t/6Tp5aS9NNjEW1Tr6X3aFXnWkB2v+u7HzmJk6vZ+0hjMwdQdwCY5osI0Gx+h+5nDJk234lR2UiIqzGB3jKhwQ/eT0j/G5zM2hz14imqVqLv7sVOYotpEtYsG4RXm7QA2yREVnppzFz75MnMmDUeyM5Ki2jwr7lv7J1/d5RnRTfLknTa99bJiuoYGD/4W1Spxte5HhTHzR6KPedubzXBEhVfm3Ivux8yZNBzJzkhEhdlW3L3q7qe7NruoMKb/1lc62BXTNdQ9pkXlGlTc/dgpjKgwYdFgdJi3Xdn0RlSYwe4YUaFne/cTUe0SXs4YjmSnI6LCEiseoZ3up/9uUK7up9vuMBpRg1q7Hzt/ERWm2fiICniKSduPzW2KavO8vO+i7seu3C4q1+/ldOFIdjoiKiy39HHofubP1VC33WE0ogYNdT9hxV3ApO3H5jaiwmwb727syu2icv3yThc2stMRUWG5XI9TBbs8IyqEX379/PH/Idr/rav0d663z1X3gMNoRA2q7H7s5EVUeGXdvRrHpO3EJjaiwhLbH6HPrtwuKtcv73RhCzsXERVWyfhQ5bPLM6JCuP/fJAa5dUXb58ofuReNqEF93Y+duYgKM9gdIypgGjO2B5vViArL5XqcYFduF5Xrl3GusIWdiIgKa9mjRVS4Irs8IyqEye7n/id/tk/U4MHv0YgaVNb92GlLUW2eLfdtENO1E5vYiArL5XqcYFduF5Xrl3GusJqdhRTVNsj+gMWyyzOiwrv+R10p6QOvzvaJssfvRyNqUH33o8JsG+/eGqZrDzarERVWyfhQduV2Ubl+GecKq9lZiKiwzR6PWSa7PCMqzLN9omzr/WhEDWrqfuycRVRYYvsjNIXpys6mNKLCWvZoERWWsyu3i8r1yzVRWM1OQUSFzexhIypcjl2eERXm2T5LtvV+NKIG1XQ/dsIiKiyX63FawFzlZfOZotoGuR7QrtwuKtcv10RhHZv/iAqZ7Prg5bDLM6LCPBtnabjp4S1VoPvhGfAZ5iovm8+ICtvkeky7cvvRiMrlmiisY/MfUSGTXR+8HHZtRlSYZ+MsDTc9vKUKdXQ/drYiKqyS8aEuj7nKyCYzosJm9rARFZawy9aiQZXbPktYzSY/okI+9vgRFa7Frs2ICvNsnKLhpoe3VKGC7sdOVUSFtezRIipggInKxWYyokIm2x/cLluLBlVu+yxhHZv5iAq5HbOVc9m1GVFhno1TZJseRuOKV3r3Y+cpRbUNsj/gVTFRudhMRlTIZPuD22Vr0aDKbZ8lrGDTnqJabsds5Vx2bUZUmGfjFNmmh9G44tXX/aiwzR6PeUlMVBY2jREV8rHHj6gwm122Fg2q3MYpwjo27REVdmAbiqhwIXZtRlSYZ+P82KaH0bjiFd392EmKqLCZPWxEBTxilrazOYyokNvGrdhla9Ggym2cIqxgcx5RYTcHb+54dm1GVJhn+/zY1vvRiBqU2/3YGYqokMmuD34ZzNJGNoEpquW2fSt25XZRuX7bpwiL2IRHVNjT8Vs8mF2eERXm2T4/tvUuKleC7meXB78MZmkjm8CICjuwDUVUmM2u3C4q12/j/GApm/CICns6fosHs8szosI82+fHtt5F5UoU2v3Y6YmokI89fkQF9DBFW9jsRVTYzcbN2ZXbReX6bZwfLGKzHVFhf2dt9xh2eUZUmGf75NjWu6hciWzdj82CRYPmsXMTUSG3Y7ZSNaZoNZu6iAp72rhFu2y7qFy/jfOD+WyqIyoc4sRNH8Auz4gK82yfHNt6F5UrUVz3YycmRbXcjtlK1Zii1WzqIirsaeMW7bLtonL9Ns4P5rOpjqhwiBM3fQC7PCMqzLN9cmzrXVSuRAXdjwo7sA1FVMAN87OOzVtEhf1t2a5dtl1Urt+WycF8Ns8RFY5iW4+ocAl2eUZUmGf7zNjWu6hcibK6HzsrERV2c/DmqsP8rGCTFlHhEFs2bZdtF5Xrt2VyMJNNckSFY5WwDzuxyzOiwjzbZ8a23kXlShTU/dgpiaiwp+O3WBfmZwWbtIgKh9iyabtsu6hcvy2TgzlshlNUO1YJ+7AHuza7qDzD9pmxTXdRuRJ0P0dvsS7Mz1I2YxEVjmJbj6gwg122XVSu3+qZwUw2wxEVDme7EVGhcnZtdlF5hu3TYpvuonIlsnU/wSaii8pP2fmIqLC/s7ZbBSZnEZuuiArHWr0PduV2Ubl+q2cGc9j0RlQ4SVE7k4tdm11UnmH7tNimu6hciSK6HzsZERUOceKmy8fkzGdzlaLasVbvg125XVSu3+qZwUs2txEVzlPa/mRh12YXlWfYPi226S4qV4LuhyfEZ5ic+WyuIiocznYjosIrduV2Ubl+66YFc9jcRlQ4j+1PRIWa2bXZReUZts+JbbqLypU4v/uxMxFR4Si29YgKyHGdNMImKqLCSdbtjF25XVSu37ppwUs2sREVzlbmXm1h12YXlWfYPie26S4qV+Lk7sdOQ0SFY5WwD2ViZuawWYqocJ51+2NXbheV67duWvCczWpEhQIUu2Or2bXZReUZts+JbbqLypU4s/uxc5Ci2rFK2IcyMTNz2CxFVDiP7U9Ehafsyu2icv1WzAmesylNUa0AtmMRFapl12YXlWfYPiG26S4qV6Ks7keFw9luRFRoHtPykk1RRIWzrdgru3K7qFy/FXOC52xKIyoUo/DdW8EuzxTVZtg+IbbpLipX4rTux05ARIWTFLUz5WBanrP5iahQgBU7ZlduF5Xrt2JO8ITNZ0SFkpS/h0vZ5RlRYZ7tE2Jb76JyJc7pfmz2Iyqcp7T9KQTT8oRNTopqBbAdi6gwza7cLirXb+mE4AmbzIgKhbGdjKhQLbs8IyrMkGUqbOtdVK5Ezu4n2FykqNZjJyCiwnlsfyIqtI05ecImJ6JCMZbunl25XVSu39IJwRM2mREVylPLfs5kl2dEhRmyTIVtvYvKldi9+1Ghx2Y/osLZytyrczEnU2xmIiqUZOke2sXbReX6LZ0QTLGZjKhQpIp2dQ67PCMqzJBlKmzrXVSuxNHdj019RIUCFLtjJ2JORtm0RFQojO1kRIUJdvF2Ublyi6YCT9hMRlQoVV17+5JdnhEVZsgyFbb1LipX4tDux+Y9RbUC2I5FVGgYEzLKpiWiQnkW7addvF1UrtyiqcAUm8YU1QpW3Q4/YZdnRIUZssyDbb2LypU4uftRoRiF797xmJAhm5OICkVatKt28XZRuXKLpgJTbBojKpStxn2eYpdnRIUZssyDbb2LypU4rvuxSY+oUJLy9/BgTIixCYmoUKqle2vXb0SF+i2dCgzZHEZUKF6luz3KrtCICjNkmQfbeheVK3FQ92MzHkm3l8Z2MqJCk5gKYxOSolrBqtvhnTAPG9kERlSoge15RIUK2YtsRIUZck2C7UCKapWg+3G17OcBLjoVn77+8nGVfvnrzyq9YBMSUaFsNe7zHpiHjWwCIypUouqd73t4+nqPCjNknATbh4gKlTii+7HpjqTBZapoV/d2xakYtD63fPW9Rkyx2YioULxKdzs75mELm72ICvWoff879twVUWGGy0zCdpm7n2BnxeY6onGlqmtvd3XFqZjsfp6/A2RTEVFhmf/+/R///sv/9fKP//xLpR3ZnkdUaAyTsJpNXUSFqtghRFSojT930f2ssq77efbZQf92m+gUjStYdTu8kyvOQyzdnz7qv998/NAt14fbjU1FRIUFBq3PLV/M/OBtg807fwVMwmo2dREVanONo+heYbuoMMM1ZiCLFd3P688O0j/jP2yiI2lA4Wrc5z00MQ/f/3RbwJPdj81DRIVlJrufA94ByrH/1WMSVrvM1F3jQG5PWfeoMMM1ZiCLnN2PfXZgsxxRoXiV7nZ2DcxDbzF/+F23PbJJiKiwWHQ/f3yr/37z7XddA/Rw+x7sECIqtIQZ2OIa89YdRRcVanN/2X2Pbp3hGoefxbru5/VnBzbFERVqYHseUaExF52EsfZ9+ks/NgkRFbb7+Y/Dup+w11HUgxlAuMYy6D996aZ5rnH4WeT41vPYZwc2xREVKlH1zudy0UkYdD8T7/oku01C74Ow7z7ptj3lOZA//vOZOrZ/f/bDf3VjJfLMACp3mWWQnr70j9kuc/jbbe9+Rj47sPmNpNsrUvv+Z3HRSRh77+dv//z8m8kWJN8MjH3155Bf+wrdUXRRYYGH/af7QY1sGURUaEPLx27WdT/PPjuwyY2831wZO4SICi1pYQZ6n9v++PUvunE3g+4n47s+v/z6+e1inOrkNp7Qf/3wW3/n6X5QqZZXQsvHbjJ1P73PDmxyIyrU5hpHsUUbM3BfzE/e/slk7L2fPG3EwyW5S/ejbyn99tntEOh+6jd4Jn/6V69qNfjBoPGV0OyBm3zv/VxuYV3mQFZrYwaO7H4e9H7n67e//6Eb1/n5mx+7y/DJgdgJjajw2qcv0q5+96nbbbqfyo0/jUde/t3zqoz8YMBKQMjwrefhZwfXWFXdUXRRoRkXPPzvf7LvOPf7hsOf9O9vBW3qJPRrBz9+PqONW3dObx3P2++m0f1cxWT3k+8doMGbnUd9y60z9YPBvsvg1F8OsEN+/ndcN7JPw4/59dVcMnQ/J/70vLfuCtnxOinYBQ///vuJw+z4HDEhS/fz+1dp/z/83v0ckrn7uf1mfvqb1PV2P2HZgV9cPG+//tslG4x/zhs54I+by5IfDPJ5OPBjL5Pbs8FDdvpG4+394IdsfRv7SHQ/z3TPlW0+Y17w8Ce7n/2/8hw9xON3nPs/Nq1+Pbi9Yr29XO3T/dye424/tVfd/eCZ+9Wxb/dz1DtAy34wyOW8Xw4YbX0iezy5jbY+kWt3P3GFFPTZwb7spSKiQhsueey9H3CVg1r2+982HGbt28W3l6t03c18il90Qm+9zv1Jje7nonofhD39C1izRffzsLC7lXPM5yNLfzDI47xfDug/s/UP8+OH/N1P71Q+HOC3312++7lN8SBZfmIoS/dSMf8F4zJaPvb8Jruf1c8Xtx/1bt/SyP8Uf9vnxyc47TndT/3Gvvqz36993S+B/bufVT8YbHbeLwfM+IMX2dT8J0/7MnY/+392cIbGO4BmD3wP/R+Ytj933J7Q79dd9qf4wVcaR0IPVLNB95PnXZ9RvQ/Cdv/j5vv/YDDmdoG/9XYHdz/3T2D2/5sF96eFw7/Dntea7/10K6nL7s3mebqXf5oAFOT2Q0j/0qP7wUJj7/3kfD4f++rP/i+ZB/xgMOL2ztYpvxzweID9LwDl/0Dm8dD6XwA64gPNjLJ86/niaH1QmsEvtY5kpyf6g5/WcZjej7W53sgfdD8H/C/tDvnBYODcXw64d7FffXP/COyWvB/L3M/pFz/cPwK7pbnf+QJwKLof7OD+Ippp8Yy997Pzyjnl0rhdFGf9csD4e3j35Pw4bPyc3lPPx2F0P8BFHPH2Pt3PlWXvfh50K2fXdwhO6H7O/+WAfvcz8nlf1rd/+t3PSLdX0ds/dD/ARdD9YIHvj//bJfcXzoMXz66XRgFfj5tqW7svAO3S/TweVPcFILofAMc6pvvBRUz+9m5kp79dQvezl65zfTjA+6/B5/zqT3e8Dwd1/zV4uh8Ax6L7wQJ7/+2Sn3f54+brHH9pHP0W6f1sjn7ylbWdvf/dptFPvqr5zS+6HwBoUe/VUcnZHNxfI4c5+gXy+t3P0y8+5z7qZ198PvhdvS3ofgAAuU12P9V8MrLFGV+Pm/j/fO3yFywn/j9fB/xFg3zofgAA+fU+DVEqemNgozO6nzeP7+fl/LrP0OP5ra+ppfsBjtN7YsoWPTQAYDa6HyAb60tKiPYMANBD9wPkYW1HUdEuAgDe0f0AGVi3UWC0owAAuh8gC2s1Cox2FABA9wPkYt1GUdEuAgDe0f0A2VjPUUi0cwCAG7of4EzWqbyM7gYA2IDuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtOTPP/8fOk+J1EA1U1gAAAAASUVORK5CYII=" alt="" width="728" height="244" />
上图也就是DFS搜索的时候做标记的过程,这样新的编号为1~6的节点所管辖的范围分别就是[1,6] [2,4] [3,3] [4,4] [5,6] [6,6],其中左边的是左值,右边的是右值,节点1的区间是[1,6],正好这棵子树有6个节点,其他也一样
那我们吧新的节点放进树状数组时
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADHAagDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzzS01qAPN/EHxJ1yfxvceHfCOh2utyaO0D6413eG2aGOVdyLCNpEjlfmwSq4BGckCusHjbQ08UR+Gn1KBdfe3+1Lp5fMpj/vY/CuW8beDPCniDxHbX97rsujX9uV+0x2OpfZTdoPmRJwCCwBwR0PbOOK4u48MB/2gl8WJrWinQWtYiSbxAyyIpTb5X8T9CJdw2g7dp60x2Pegc0tYy+LtCUEf2zYD63KD+tKPGGhEZ/tiw/8CU/xpBY2KKy4fFOjXMyRQ6rZSyuQqolwhZiegAzzWmDmgQtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBaQnFJvGcZ5+tYfiTxxofhNFOq6nBZswJWJ3+dsdcKOT1oA3C4H86aWBIHfHFeeS/EXX/EgEfg/wvNc5POoa4zWNoq4yCDtZ3z22IRnqV60r/DfWfEgYeLPFVzeWz/f0/RlbT4MY6FlYynBPUOOmcDpQM474ReCdA8UXnxHutX0ax1S4TxjfxpNdQK7BAkW1QSOg9K9A/4VN4K/6FXSf/ANOf0ry74TeNvCfwlsPiFp+talaeH7a18VahNDDOduICIiHH97JJOeSSTnJzXo8Xxp8DTRo6+JrLbIAwy5Bxj6VaLWx454w+KHwy8Bpq6a14A0zTruwmMUMdw9lGjnBKCSQuEgZ8fKrkEj8cex6T8NfBGr6VZ3y+E9HRbmFJgogikC7gDjcuVP1BIrza4/4V9q+qQa5L8TXu9WtizaZf8AmRN9liJyUA2bZBnuwPQeldl4P+IHw38EeHLHw7pvieyFrp8IRUaXLgEk7mGO5JPTHNNXuBi/HH4feGPD/wAMtQv9N8P6bY3sN3YmOeC3VHQm7hGQRz0J/OvcEGBXhXxq+JXhbxP8Ob7S9K1u11DUbi7sVitoSWdyLuFsAAein8q91U5FQyWOooopEhRRRQAUUUUAFFFFABRRRQAUUUlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhOKAFopu8ZxTJrqK3heWWRYo0G5nchQo9ST0oAkzQWrz69+NGkz39zYeHrDUfFt5bSGKY6Rbl4InBwyNOcRhhxld2eQcYqFtI+Ivi0gX2r2HgzTmBDQ6Qn2u+IOCD50o8uJhjBAjlBBOGHFMZ2+r+ItM0C2a41K/t7CBQSXuJAg9e9cVcfFe41uRo/CHh+88QIAduov/AKPZZBwcSNy/1UEe/WtHRvhD4a0mYXM1iNX1E4L32qMbmZ3zndlshTn+6B6dK7FIhEgVAEUdFAwBSA8/m8HeMPFK41vxL/YsHRrTw+pUkcHPnOMg544GK3PDfw28P+FJJJtP09PtchzJd3LtPMx7ne5JGTzgYGSeK6cDFLQIYEx0NH3fenE4rjviBr1zEttoWkMDrmq5jiOM/Z4uBJM2DnAyB9SKAMG7srT4o+M5oPsdvP4e0S4Md7JLGpa7vUClYypH3EDA7u5wOnNbXxKv7HwX4D1rVo7S0imt7crAzQKVErkJFkY6b2XPtmuj8P6FbeG9HtNNsgVtraNY1Lcs2B95jjlj1J7k1xnxkjbVLXw7oWBImp6rCs8JHyvAp3Pn2DbD68Uxmr8O/A1n4T8C6Ho8un2kc1raqJ0ijBQTH5pNvHQuzEDtmsDw1ounr8YfF5FhbD/RrYZ8legReOnvXpoNcB4dO74yeLCM4FlaqfrtyT+RH5UAdsmlWcbK0drAjKcqwjGVPt6VbAIHNApaQgooooAKKKKACiiigAooooAKKKKAEJwcVDPfQWphEs0cZmbZHvYDe2C2BnqcAnHoD6Vw/jzxdrcfiSx8K+F1sU126tHvjcaoH+zpCrBCMLyzEnoOw561w/7SWvXFp8EbHVb++sfDepieC4+2TBbm3s51Rn3g5DOFIJATLPgIAQxoA9qttZsL2RI7e8t55HTeqxSqxK4U5AB5GHU/8CHqKnW7ha5e3EqGdFDvGGG5VJIBI64ODg+xr88Pg9Z+MdKHg2PS/GFv/wAJUdM0nSLOG10+2uYI0klCX6rMr/O6W9i8megEKLgHr2PxN8Yarbn432cfiOyvoksJzNdWdrcLeGWK22CCUqf3MSD5wUILybwozk0AfcCTpIMowceqnIp4Oa+WP2TJTH8V/iHaxMUtE0XRJEgU3YjDtLqIdgtySwJ2rkjg7R36/Uy9KAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKWmnrQAhlVWAJAJ6DPWl3A9Oa8J8b2sTfFbd4ltdeup2vbVvC0mitKscKBY/P8zaQmd4lLeZnKHAwerPCXxpu/E/7Uet+EpBe2OmWejuILK4tJEEssN00clx5hXaVYMm3BJIHTg0Ae9daWm7setBcD6etAC0FgK5vxH8RPD/hZCb7UEMudotrcGWZjxkBFyT1B6dK59PF/i/xTvXQ/Dn9k2rAKL7XHMZBPUrEuSeCMZI5yO1AHoTSKgJPQDNcbq/xf8L6XOLePURqV42AtrpqG4kYnoAEyOeg+orPb4V33iFg3ivxNfatCcFrCzP2S2PfB2fORkKeGHSuy0jw7pugQeTpmnWmnQ8/u7SFY19+FA60xnEDWfiF4vYDTNIs/B2nt/wAvmtt9quz3UrbRnaAw4O+RWXnKnpUknwR0fXSZPFd5f+L2Yktb6nORZnP3lNsmI3Q8ZWQOOB759EC0opCuVdO0y20iygs7G2hs7OBBHDb26BI40HRVUAAAeg4FWlGBilooAKKKKACkJwaWmOcflmgDO8R6/a+GtHutSvGZYLdNxC/eY9Aq+5JAHuawPAfh263y+JNajC6/qCYaPBH2WDOUgA7YGN3qRVC3RPiT4pNzKTL4c0adTbIBmO7u1Y/vN2eVjI4HTdznjn0BelAwyF6157q841X43aJp4Vj/AGdpMuoOJB8h3yeUhX/aBDdex9q9Bc//AK689+HO7WfGvjrXZGYk3qaVDG3Kxpbg52n/AG2kLEdKBHoQBA/wrgPDv/JY/FgPBNnasOf4duB+oNegdPrXn/h7j4x+LMjk2Vrg/wCzt4/XdQB6CKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+N/h9o/xAsYrbVop/wB0xaKe0uZLeaPI5CyRkMAeMjODgZ6Csb4gfCyPxZ8P4PCGlT2ug6YpiiJS0ErQQJ0+z8gRTKQrJLhtjKDtNd7RQB4ro/7OLaJYS3MHiWUeKYLl7rTdZS1EYhYlt3mxKwExkDESkkbhjaE2ptd42/ZotviDFdS6r4y8R2uo3nyXM+l3KQRtCY2R4BCVZChLlwXDODjDcV7RRQB5v4C+DTeCPGep+J5/F2veItR1Gwh06ddUkiMZjikkeIgJGpBUzTYOf+Wh9sejgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACmsM0pOKZJOkUbO7BEUZLMcAD3oA8rvb/xx4l+IXiXS9C8Q6XomnaULZUS50prqSRpIg7MW81ABzgDFKPBnxGW9N2PGnh77YYxEbj/AIRk+YUByE3faM4yx49z6074aa/p3iH4l/EW50y9hv7ZJrOJpbdtyh1tlyM9/wAK9KyO/HTvVpFpHm8/hr4rCCTyfHmhNNtPliTw44UtjjJFx06dB61y+q/Cn4t+LLbT/wC2/ifpVqY4iLmw0zQnWCSQ/wAXmfaFcgDIA4HPIrP8ZQapd698VLS3k1h7eW80aSRUkkWMWmIluBAykFRtWTcEIPPWvSPg3bXFp4ISOZbpLUXU32FLyR3kW13nyQS5LH5cY3EmhIehzmhfCrxn4dbdp/inw3av/FNH4aYysPQu1yWP4muz+DnibUfGfww8Oa1qxgbU720SW4a2QpGX7lVJJAPXGTiupGOfcVwX7On/ACRLwh/14pSZLPRgMUtFFSSFFFFABRRRQAUUUhbFAATiuJ8e67d3d7b+FNEcLrN+okmm3FfsdnvCyzDjl+cKOMnntW/4p8R23hbRLnUrpZHihAxFCu6SRiQAir3JOBj3rH+H3hi60y2vNW1dYv8AhIdWk868aIkiNRny4VJycIp/76Lc9KAOg0TRrfQNHtNNs12W1rGIkB6kDufUnqT3JzV9cgc0AYFBOKAKesXw0zSry8Yqq28DykucL8qk8+3Fcp8GLFrP4d6ZIyusl1vum3997Egj2IwR9ab8adSksvh1qkNvse8vtllbxSdHeRwpA99pY57YrrtH06LR9Js7CAsYLWFIIy5y21QFGffAoAtY7V5/4dI/4XD4tC8/6Lakk9m2jj8sc+9egnrXn3hw/wDF4/F2Dx9ltRj32CgD0EUtIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazhepxXHWHxl8EanDrs1r4m0+aHQ8/2jIJcLb4zkknqODyMjigDs6KqaTq1nrumW2oafcx3dlcxiWGeI5V1IyCDVugAopCQOtIXA7GgBc0yWZIVLOQqgElicAD3NcXqXxTsJNTk0rw/azeJ9UjwJU08jyYM5x5kx+Reh4yTx0qCL4fal4mmF14v1U3iZJXSNOkeG0QZ4DMMNLjHVsDkggigCzqHxHhvr6bS/DEC6/q0XEm19ttB82CJZcEKeDwASaqj4b3nihhL4x1ZtViHTS7QGGz7csB8znjuQMEggiu007S7bSLSO1sbeGzto12pFAgRVA6YA4q0oIHNAHmknw117QvFGr6l4W1aw0uy1JIA1lJZjbCY02ApjsQBxVn+wPiKMD/hJdL/8AzXolc38QfEzeE/C15e26rJqDL5NjC+SJbl+IlI9N3J9ACe1O402ed+H7v4k+IfEuuWtv4g0f+zNNZLb7QLM7pLjG6Qem1dwH1z1GKb4vvPiV4a1PwnbR67pNwNa1ddOkZrQjyl+zTzF19/3IGP9o16V4E8Np4U8K6fpylnmRN9xNJgvLM3zSOxHcsSfT04xXM/FnA8Q/DAEA/8AFUrwTj/lwvaLhckTQfiIGyfEelMM9DZnkelbnw18Ht4A8CaL4ee6+3Pp9uIWuNu3zCO+O1dKvelouFwooopCCiikJxQAtFN3jHHP0pQd2fyoAWo5XWMFmYKAMkk8D608sB14rhvHN5P4i1W28JafM0X2hfN1S5iwxt7bnCkZ4MhBUegyfqAVrCP/AIWJ4v8A7SlzJ4d0d1NgCo8u6uupnVupCY2gdCSx7CvQVJI5qrpWl22i6ba6fYwpbWVrEsEMMf3URQFVR9AAKt0ALSHPalpCaAPPfiWV1TxP4J0M8m51Brxs9CkCbiM9idw/I16EvSvMLDUh4l/aC1WGGbfb+GdHihnt5ExsuLlvMjkQ9wYkdT7jFenjpQAGvPvDzH/hcXizdwfsVrgeq7euPrkfhXoJrz7w8MfGLxZznNpan6fL939M/jQB6CKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZXinR38QeHtR01JzbPdQNEJRn5SR6AjNePx2XxAtvBuoWlr4A0m31bR9MXT9NuHu4JJL9gy/PEekUZC7ismDvK8HGT61401mfw94U1XU7VI5bm1tnliSXIQsBxnHOM1yNinj3xHpOmalBrGk6at1aRTtAtuZAGZQxwSPf9KAN74W6QdD8B6VZvo9xoUyq8k1jdXKXMqSvIzyM8sZKuzuzOSOMueB0HUlgK88/sP4iAf8jPpf0+xf8A1qw/EHgX4j+JnsgnxDj0y1t5S00WmWqRtckEYUykEqAQcheucEjFOw7HZ+IPiXpWjXkmn2qz61rCj/kH6anmyAnoHI4QcjJJ4BycDmse38I+IPHMTXHivULjS7Gfp4f06YKI0y3yy3CHLsQVJ2EYK8E5NU9L8D+MdCilTTNW0PT45ZDK62+nhdzE5JJ6t9Tk89avfD/W/EcnjHxHoWvXlnqH2BLeWCe2h8psOmWDDvzQB2mjaDp/h6wSy0yygsLSMkrDbxhFyTknA7nqT1PfNX1GBQowKWkIKKKKAELBetee6on/AAmHxWsbNcSaf4diNzcq2drXUi/uhjuVQ7uf+egIPBB6vxb4ms/B3h2/1m/LfZbOIyMsYy8h6KiDu7MVVR3LAVgfCHw/qGjeDre51tI18RamxvtTMROzz35IXPIUDAA7YxQB2yjArzr4tAHxD8MM4H/FUr1/7B97XooGBXnHxdONf+GHJH/FVL0/68L2gD0deBS0lLQAUUUUAFcv8Tjr6/D7xCfCuD4kFjKdPBAI8/adnXjrXUV5J8QLa+8RfGzwv4dXXtU0jS5fD2qX8sOmSpH5ssdzYIjMWVs4WaQYGPvUDRw0mu6T4M+EHxB1L4YXWu315a2cUkn2+eSVBeHeJNjz5CT4KmQfdX92cDPPpfwC8TDxD4C8l5dWnvdLunsrubWbuG8meXasuVuIQI5k2yqAydMFTyppZ/hGl2rpN4x8VSo42ur3sRBUg5BzF0OTxWRp3wn0Dw55eg2PjLXNM+zWxuF021u4IVhhDfM4jWIBV3HnAAyT3zTsOx6H4v8AE0HhXRJr6UGWXKxW9ugJeeZztjjUDnJbH0GSeAaz/APhibQdMkvNSbzte1FvtN/IcHY5/wCWSED7kY+VcDnGepNcND8FNG8V3Wk+I4PHXirUIYYnNlLFqaGL58fvVAQDdgFQ3oxpNf8AC954K8V+Cri08V+IrxLrVBBNbXl3G8MqFG4ZRGCRnngjmgR7KOlLSKMClpCCmt1FOrn/AB9qn9i+DNavQpcw2kjbVfYT8p6HsaAOI/Z8055dG8TeJZJPObxJr13qEQfmWGEEQpAxx/AYnwBwN3HU16sBtGK574daUdD8C6DZMMSRWcXmfLtJcqC5I9SxJPua6KgBD1rz7w5/yWLxcMY/0W1zx/sDnP6fhXoB61wHh/I+MXivcQT9itdp64XHT89x/GgD0AdKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAct8UCB8PtfB4/0R/5VL4KP/FFeHf+wbb9f+ua1X+K08Nv8OvETzzLbx/YpB5jqzKDg4yF5xnGcV534Zg+O9n4b0q3+xfD2LybWKMRyz3wZQEAwfk6+vvTTsNOx6/eYNpOCruDG2Uj+8wx0HvXl/wRguY9T8WzLa6lZ6LNcQfYotShMLKQhEo2Ekk7sEvnDbvanMfjuQc2vw6PH/Pxf4/9ArK0/wAXfGXV/EWtaFb2fgEX2kpA1y0lxfbGEwZlA+TPRTn8OtO5XMe0ZA64ya4Pwrn/AIXR4zPb7HZAc/7BrIz8eD/y7fDof9vF/wD/ABFbHwz8K+MLDxBr2ueMn0MX1+Io4odCaZolRFxljKAd304xihsTdz0YdKWkHTmlqSQprNt7E/SnVU1TUbfSLC5vruUQ2ttE00sjdERQSzfgAaAOG8WEeLviJofh8jztO09P7WvUH3WdWxArf8C+bB9Aewr0JDketcL8KLC4k0i71+/jZNS1uc3cjPw3ldIRjsAmAB6Y713a0ALXnPxa/wCRg+GHGf8AiqV74/5h97Xo1ec/Fv8A5GD4YY4/4qle2f8AlwvaAPRQc0tIvFLQAUUUUAFeXa5/yct4SwMn/hEtZ6Dp/pmmV6jXE+NPhrD4p8TaX4gh1a/0jVdPtLixjls5dqtDM8LurDv80EeD2waaGjrCDx6cV55qHhPVpvjRN4gi022bSW8NSaabrzgJXmacOEZf7oCnn1k+tYHjTw1rukpaaXpXjfWLjxDqEgjto96t5CE4e5dT/wAs4xkkHG44UHJFXfFHgXXvD/gvU9QTx5rU17Z2LyiViAHkVCdxXoMkdKdx3Oi+DPh7UvCnwv0DRtWsIdO1CzhaKW2tn8yKP52wFbuMEVV+J/GveAP+w0nU/wCw1UPDPgHWtV8N6XezeOtbae5tY5nbcFyzKCeBwOtaNv8ACSaTXNI1HUfFGraoumXBuYrWaXETvtKguO+M5HuKTEz0QHNLSClpCCvPvjJm/wBH0jRFVpP7X1O3tZUQ4cwht7kHtgLnPYZNegV594ikOufFjw5pgIaLTYJdSkAOCrcxqf8Ax4D/AIEaBo7+PG3jp6U+moMD8adQIQ1594dCj4xeLQvObS1Lf720ZHvxt59zXoJrz7w8CPjF4tzxmztWGeMjaBn8wR+FAHoIpaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAornvGnj/QPh7pyX3iDUU062kfYjFGkZjjJwqAsQAMk4wB1xWvaarZ38du9tdQ3C3EQnhMUgbzIyAQ64PKnI5HHNAFqkLAHBoBzWJ4y8UW3g7w/d6rdElIVwkSjc0shOERVHJJJAwKAOU8Rp/wALA+IFnoOSdF0PZqWofLkS3Gf9HhPsMGQ9c7QpGGr0Zelcx4B8NXHh3Q2F8ySateTPd30iElWlcjgE9lUIg9kFdOBgUABGTXm/gsf8Xp+JX/XHSu//AEylr0jvXnHgr/ktPxL/AOuOlf8AoqWgD0iiikLYoAWim7vY/lTqAEJxXnvxMJ8S6toHhJCWt7+U3WoIhw32aIg7Wx0Vn2jnghSK726uI7WGSWZhHEiF3duAqgckmuC+FFnLrSal4yvQ4vdblJgSTj7PaJxFEB27sexZiR1oA9AjUIgVQqqvAVRgCnCgDFLQAV5x8XMf8JB8MM4/5GlcZ/68L2vR684+LgJ8QfC/HX/hKl6/9eF7QB6MOntS0g6UFgPqaAFopu4f0oDg0AKTisDxp4vtfB2krdzpJcTTTR2ttawjLzzSOEjQemWYZboByava9rtn4c0ua/vpfKgjwOBlnY8KqgclicAAdTXPeFtButU1OTxHriMLx3b7BaueLOAgbQV6CX72489SBxnIBZ8GeEZdFlv9U1GZLzXdSk8y4nHzCNRwsMZIB8tccDA5JJ6074l5Hw78SgnP/Evn/wDQDXTgYFcz8Tj/AMW88S/9g6f/ANANAFjwISPBOgf9eEH/AKLWt4HNYPgU48E6B/14Qf8Aota3DIqKSxCgckntQA+iqem6vZazYRX2n3cF9ZTDdFc20iyRyDOMqwODz6VbBzQAhrzvwO6+IviR401tWEsFlJHosBK7WR41Dzj3BLR4P+ya76+uo7G1muJSRHChkYjqABk/pXFfBSzePwJFezLGLrU7q41CZkByzSSsQWJ6tt2j2wBzjNAHeL0paSloAQ1594dG34xeLOdwNpanjt8uNv6Z44+avQDxXn/h3afjD4t2ggC0tQx6/NtHI9BjAx6g0AegilppYL14oLgUAOopAQelLQAUUUmecd6AFooooAKKKKACiiigAooooAKKKKACiiigDzP4h6F4j0/xlpfizw5psHiOaCym02bR7q6FsAsjK3no7AjcuzaRjJV2xWD4S0C90f48pPL4duLRH8KwWV1qNhDs0vz45FIiiBfKhRuCjaOMZJxXc/Ebxtd+Do9GjsNL/ta91W+WxhhMwhVWKs25mPb5ayv+Eq+IOf8AkR7T1/5C8f8A8TQB6GDwefyrzm6hPxC+JkcJfd4f8Lus8iq+VudQIPlhgOohXL4P8bRkdOSfxV8RhBJ5PgeyM207N+sJt3Y4z8vTP/6qw/As3xE8K+HLezuPBdjPqEjPcXtymrx4mnclnb7oJGTgZ6KFHanYZ7Enyg59eKd1ry/V/iD440HS7vUbzwTbfZbWMzSiPV0LFR1wNp5r0TRNRTWNHsb+NDHHdwJOqt1AZQwB/OgC53rzjwV/yWn4l/8AXHSv/RUtej96848Ff8lp+Jf/AFx0r/0VLSEejivKfjrrd9YP4c06TWZvCvhbUZpo9Y8Q20vky2gVAYo1lIIh8xiQZDjAHUEivVs4rz3xf8QbdddvPDQ8Kah4lWO2SW7ENukkChycIwbqcDPTHI96AOB+H/xF1S2+KWj+F4fFA8U+Hbu3uI4r67hVC5gXcPKmAzcS4ZfMyAoGGUndge/g7R/hXj2nanZaRrsms2Xwr1S01N4VtzcQ2yKRGucKADgdcZAzit4/FLVR/wAyJr4/7Zr/AI07DsWPitePe2Wl+HLZ2W41y7W2k8s4kS2A3TOv0G0Z/wBuu2sbWKytIreBBFBCojjRRgKoGABXimleLPENz431LxBqngPX18lfselwgIwSHgvKcHhnOOOwFdcPijqo4/4QTX+v/PJf8aB2PQ6K5PwR8QE8ZXeq2j6TfaNe6c6JLb3yBXIZQysME8EGuspEi15z8WzjxD8L+SP+KpXocf8AMPva9Grzj4tnHiH4XkjP/FUr2z/y4XtAHoq8AV5J8a9XkHiLw7oep6/c+D/CF9Bcy3uvWl39jkFxGYvJt/tGQIg4aVs8Z8rbnnB9b6DH8q8t1/4laf4h1vxH4ZXwbqHiePRbuK0vlNqktv5rQRXCjDZzhJo+o6n2zQBzdp8WPFVn8QfBOjhrW98E6vp1u0fiq+sZI5NSuXR2MaBCqwOVRXCsmMbumMV7lNOlvE8sjiONQWZ3O0KB1JJ6cV41qt7HrXi2w8RXfgLxNJf2QHlx7v3BZd2xzGWwWTfJhsfxt61Prfjy/wDFM/8AZt98OPEFxo4CytMJYwkzhs+UyBslcgHng4xinYdjf8MCf4k6pbeKbyKa10exnl/sa1cFDN96M3UqnqGBPlg9FO7qRj0NOFwa87T4n6nGgVPAevqoHAEKgAdh1rQ8HfExPFfiTUtCm0XUtG1Cxtobt0vowoeOVnVSpB55jbIoCx21cx8Tj/xbzxL/ANg6f/0A10wORXM/E4/8W88S/wDYOn/9ANIRY8CnHgnQP+vCD/0WtYfxm8Oan4q8DXFlpcYu386KS405pfJGoWyuGmtd/wDD5qApk8c84rc8CnHgnQP+vCD/ANFrUXjvxlb+BdB/tO4tri9LzxW0VtagGSWSRwiKMkDqf/10xngXxV1G41r4aLJoGj+JfhRfaxren6Np11FKmn3BuJ5DEsk0Kbh5SNJkrkF+emM19L6dajT7C2tRLNOIY1j824ffI+ABuZj1Y4yT3Nef3HxGvrsIJ/h9rkwjdZFEkKMFdTlWGT1B6HtUw+KWrDj/AIQTxB/37X/GgLGj8YNZ/sH4beIL7Y7+XbHiN9jc8cH8a3vCulHQfDWlaYzI72VrFbs8a7VYqgBIHpkV5D8QvFGv+Lp/DVrH4D18adb6pHfXsqhAwWH50TaT86uw2MOwPeuv/wCFo6qB/wAiJr57/wCrX/GiwWPRKK5P4d/EOz+Ithqs9raXdhLpmoy6ZdW95HsdJowpYe4w6811lIQh61594eJPxi8WZxkWdqoA4+XbkfqTXoJrz7w+R/wuLxYF72lqWyejbRxj0xj9aAIfjp4j1Tw54UsW0+4fTbG71CO01XWYgC+l2bI5e5UHIyGEaZIO3zN3bI81ufjc3w2l8PabperP408NTXZt013UHkuJLp2mMX2SKeNSpki4Yyy/KykKCWyR6n4i+JiWniC/0C18Oanr728Km7NrErRrvGQhyeSVOfTFcR4g146qdKs5Php4rj0vS5N0Wn2ISGzmxgqHiUgMqlQVBGAadhnuinj1pc15YPjRrXI/4Vr4nJHUCOPI/DdR/wALn1r/AKJp4o/78x//ABVIR6nkUY5z36V5s/xinsrrTk1HwfrmnQ3t1FZi4mjXZG8hwpbngZ616SpzmgA6UtFFABRRRQAUUUUAFJnBxRnnFeU/GT9oDR/gve2Ca3HaJaXjWqJcT6pBblTLeQ2zEpIwbagmEhcZG2NwduMkA9VDhhkdKUHNeM/Df9qTwX4/vL61uNa0PRLqK6S1gtrjXbSWW4dhkKFVz83IUhSw3ZALYzU97+0jpem6Do183h/WdTvdc1BrPS9G0hI7i+uItlxIlwyM6BI2S1nYEtj5eCewB7BRXL/Dj4gWnxL8N/2xaafqOlBbma0msdVhWK5glico6OqswBDKehNdRQB5d8YtStLbxZ8MrOW4SO7uvEC+RC33pNkErPj6DmvR8N6H9a8b+N3geDxv8W/hQkt/eabPp9xf3dvcWMmx1f7My/lgmuk/4VZqGf8Ake/En/gSKtFoh8caxPpnxf8Ah1bLqN9Ba3v26Kayihke3mIhyjOwUqpVsYyR96vRgrehrzuX4Z3kGzzPH3iBBIwRRJdABmPQc9/QDrTx8LNQH/M9+JT9bkUahqbvxK+X4feIScj/AEN/5VoeAyB4I8P9B/xLrf8A9FLXmXxE+GOoQ+AvEMg8c+Iyy2UmCbkHB2nB/CrnhL4Y383hLQ5B448RRB7C3IRLngfulpCPXc815x4LP/F6fiV2/c6V/wCipaafhZqJ6ePPEmf+vgGsPRvhTZz69rl/pnxJ1281CRo7e/WDUEkMLRg7VdV+6cMeDzSsKx7LkVwGhMT8YvFfU/8AEvsiM9P+Wn+NVR8LNQx/yPniT8LkVxfh/wCG1/J8WPGEI8ceJAqWtn1uRwdhJbOO/p7U7WHax7t83uaxvGMkcfhnUWuJ7u1hWEs81mGMqAckgL8x4B6Zrlv+FWah/wBD34k5/wCnkVW1PwA+i2M19qHxG1yws4F3S3N1fLFFGPVmbAFMZL8Bb6/vvAkz3TXj266ldR2D3cLxlrQSEQlQ4D7NuMF/m9a9Gy3P3vXoa87h+GV7cQpNF4+8QyQyKGR47lSrKRwQR2NP/wCFW6hx/wAV14k9/wDSB/hQBJ4JI/4Wv8QvXzLLP/gOteig18/+D/hvqMvxL8ewN468RkRPZgZnA/5YA5yB7123/CrNQ5/4rzxL/wCBIpWFY9KzXnXxaVn8Q/DDaCceKVY7RngWF7mon+GN7GjM/j3xGqgFizXQAAHrWZqfwRHiSTSLu48c+I7g6ddC/s5I7wYWXynjDZHUbZX496VhWPWz/TvXk/wmJ/4Wj8bsZ/5GOz/9M+n1oj4WagX48d+JADgAC5HH6V538Nfh3eXXxD+LsSeL9et2g1+0DSR3GDKf7IseW9T/AICiw7HsfxH0KTxT8PfE+jJNdW76hplzarLZ/wCvQvGyho8/xDPHuBXLfA231Gz0jVLa806aztUuF+zXE9sbWS4G0biYskDBGMjrVn/hVt+M58d+JOAeTdcVlaH4asfE/n/2L8VtS1gQcS/YNUim8v8A3tpOPxpgergsQeCK890Y/wDGQvijnj/hHdN/9H3dL/wq2/5x478Sf+BNcFp3w4v3+PXiC2/4TTxCoj8O2DGQXPzMTcXPf2x+poGz6Grmfibz8PPEg9dPn/8AQDXOD4WagR/yPfiXp2uRWV4m+HEFto80OtfErW9PsrwfZTJd6gkIcuCAis2BuPYUrCsegeBD/wAUToHb/QIOv/XNa5H4+n/ildF5/wCZh0vkdR/pSc1FY/B+702wtrODx14lENvGsSBroE7VAAzx6CuL+M3w3vbLwtpbt438ROz67pqKzXAO0m5TBH507BY99yxJ69TXG/F3R31nwFqIEl/HJaAXkaafIySSsmSEyoJIPcd6ov8AC2/Lsf8AhOfEgyegueBVDWPBC+HbFr3VfiXrOlWSMFa5vr9IowScAFmwMnp1pjOu+H1hNpngTQbWWe5uZUsoy8t0SZWYrk7j1zk47V0ILFgDnk55rzbT/h9Jq1lFeWHxF129s5hujuLa8SSNx6hhwasf8Kt1AkAeO/EnX/n4FIVjP+ABxd/FH/sdb7n/ALZW9es5r5x+Dfw0u7mf4iGLxhr1pt8YXwbybjG/93Dyff3r0X/hVl+SB/wnXiXn/p5FKwWPSCa8+8PNn4xeLe3+iWgxnr8v3vxzj/gNc/ZeHLXU9cutHtfiZ4gl1G1GZYFuTkDvg4w2OM7Scd8VZtfgfLa6zeanF458Ti7vEjSUtdgghemBjinYLF/wtn/hc3jvGcfZ7Hv1/d8f5969C+YHPOPSvC/Afwz1DUfGvji9k8Z+IA6XsdmFF0QuxIxjpznnqTXef8KvvQcf8Jn4g/C7PT86AOD0rRvFlp8fZ44La8l0WG5mu7nVbhHRZopUDRwo27YyxsSmMbvlz3Fe9KRivJp9DsbTxHDoUvxE1qPVJV3JbG7fnI4G7oGPUKTk5yBW4vwuvcf8jp4gP/b0aQiL4zsHsPC1qAS1z4gs4wewILPz7fJj8a9DXpXg3xo8AXugeELHWk8W65Pd6ZrWmT24muSybnvIoW3KeoKSuMe+e1e8qNopCHUUUUAFFFFABRRRQB88/tT+GLDxZc6LZa3BeW+kBGcapBp51JYpt3EYtiCoLDkuynhQBjv4X8WINS8V/BL4Jjxlpb6reSWdp/aF1rN79iv4NRtl89vL/dNIJ5GgZBJ91VMqgBpVr74IOeKx9Z8GaJ4ileXU9Ltb+R7ZrRmuIw+6FvvJz2NAHy78EfC2nXnjttR1fT9HsriDTro6RFcW0KpNcXL273ShkVUbypoFH7vA3SSFRgjHjclj4YNn4K8Iz2vgXTm/4SVdSvLOW0u57Ag6dqSec8/yCSEOI1iSPaIyFBLZyf0FufBmiXdpplrNpdrJb6ZIktnG0YxAy/dKehFXJ9DsLmJI5LG2kjQbVV4VIVfQDtQB4t+xk2nw/CO+sdOl054bHxDqkBTSI3S1T/SndRErksFKurDJPDDmveKr2ljBYoUt4IrdSclYUCgn6D6D8qsUAeZePJ4oPjF8OWlkSMYv+XYD/l3PrXd/2jZEn/TbYc/89RVPxR4G0Pxp9l/trTYb/wCylmhaTIaMsMNtIIIyODWMPgt4MGf+JFCM+ksn/wAVVXKuc/8AF2wGtar4BubGwj1aXTtfguJbiKZAbKHDeZKckZGMAgc/MK9F/tGyyc31v9DKtc3/AMKY8GjpokQ/7ayf/FUD4L+Dcf8AIDi/7+yf/FUXC4nxL1Gz/wCFeeIsXlu3+hSdJV9PrVzwVqFn/wAIZ4fBvLdSNOt+DKP+ea1maj8CfA2q6fc2VzoEMttcxtFKhkk+ZCMEfep8HwP8E28MMS6DAFijWNP3knCqAAPvegFK4XOmnvrKS3lja7gcMhUoJgN2R0znivMfhDbxQavq19feH5vDN4oa1iWaSEQGESsVCbGO8nglmGegGAK6z/hS3gwHjQoRnriWTn/x6l/4Ux4NI50OI/WWQ/8As1FwudGNQsweb23P1lFcH4Z1K1Pxj8af6Zb4+yWX/LVeuw9s1sD4LeCxnGhQjJycSSf/ABVQj4F+BRcTXA8O2vnzALJLufcwH3QTu5Ap3C51f9o2f/P7b/jKK5zx9PaT+HZCtnFrksTrKltE8bSKRkB0VyFYrnOCQD60w/BPwURg6DD6f6yT/wCKp3/CmPBvX+w4gfaWT/4qi4XKXwd06Twp8M/D+karcWsOo2sBWZFnDYJYtz74IyOgNdj/AGhZnP8Aptv/AN/RXM/8KV8F7t39hQ59fNk/+Kpf+FLeCwSRoMGf+ukn/wAVRcLmR4O1G1X4qfEEm8twrNZEHzV/591HrXd/2jZYz9ttgPeUVy0XwL8CwXE08fh21jmnx5sis4Z8DAyd3NSD4K+CwMf2FCB6CWT/AOKouFzD+PPhy8+IXww1jQtD1azhu7mPJhklwt0oBJgYqQQHOAcdsg8Gt34Z3Elh8O/DVprDWun6nBYQxXNqJlxFIqAFRyeBj1pD8FvBhOf7Ch4GP9bJ0/76pf8AhS3gsgZ0OI4/6ayf/FUrhc6UalZKcm9t8A5P71a8w+FWoWq/Ev40lrqBVPiKzAJkGD/xKLA+tdX/AMKY8GjpocWf+usn/wAVUUfwO8DxPcOnh63V7hw8rK8gMjBQoLHdyQqqM+gFFwudLPe2U0MiG8tyHBXiYD9e1eS/s/8Ah278B2U2j3B+x6HY28FnZjUDbrckxjbw8QHmJtAwz/MTkkCu6/4Uv4M4/wCJHFx/01k/+KpD8F/BhIzocRx0zLIf/ZqdwudJ/aVlj/j+tv8Av6P8a860vULT/hofxMTdwBT4b0/B81ef9IuveuhPwW8GEAHQoiP+usn/AMVUY+BvgcXbXQ8PW4uGQRtKHk3FQSQud3QZP50XC51H9o2WP+P63/7+r/jXjf7QvhLUPF934YvtHmW8TT3nEtrB5Mokd48RmRJTtKBgCSPmHavQf+FMeDP+gHF/39k/+KoHwZ8Gg8aJGP8AtrJ/8VRcLo2tLvlTS7QXt5ZfbVhQT+TKNnmYG7b7ZziuE+Ot9aP4U0YC7gOPEOmEkSrgf6VH710B+C3gwqAdChI9PNk/+KqG5+BXgW8h8qbw5azRb1k2SM7DcpyrYLdQRwe1FwudY2o2W45vbcexlFcx8R9LsPFXhC/swum6leIpns4roo6LcKD5b4bIyD0pw+DHgzH/ACA4h9JZP/iqQ/Bjwacf8SOL/v7J/wDFUXC5b8FW2n+HvB+jaXHJa2gtLSKNoElXCNtG4dfXNbQ1GzDD/TLc/SUVzQ+C3gvOf7Chz6+ZJ/8AFUn/AApTwVzjQYM/9dJP/iqLhc5X4F6naef8Sw13CpHjS/X5nA5EcPFeoDUrIc/bbcjr/rV5/WuWg+B/ge2Mpi8P28ZllM0hR3G+Q4y7YbknA59ql/4Uv4MGP+JHFj2lkH/s1CYXRwngz4d32g/FTUNeutRszp7zXEyN9vLo4kChVihIAhYAfO4J38elevjUbJcf6bbH6SrXNH4LeDCCP7Chwev72T/4qk/4Up4LOM6DAccD95Jx/wCPUXHdGb8NdUsk8R+Owby3B/tgnHmr/wA809671tWsv+f23H1lWuPi+BXgSCaaaPw3axyzNvkZGcFz6n5uTU//AApjwZ/0A4h9JZP/AIqkTocJ4s+Hl9q3xhsNa0zVrWw8PSS2+o6ntul3XF1CjRKCm3IHl+UMhh9zkGvZV1axAP8Aplvx/wBNV/xrlf8AhTHg3PGhxe/72T/4qm/8KV8FndnQYTu6/vJP/iqA0MX9oPUrSX4X3CpdQsf7U0ngSA/8xK2969RBzXEf8KU8E5Unw/bNtdJAHZ2G5GDKcE4OGUEe4rtwMCkIWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=" alt="" />
那我们求出每一个节点从1~左值的和 和 1~右值的和 他们的差就是这个节点的子树的所有的和(即这棵子树苹果数目)
可以百度下看看树状数组的实现
最后每输入一组数据就进行依次操作就可以了
#include <cstdio>
#include <cstring>
#include <vector>
#define MAXN 100005
#define mem(a) memset(a, 0, sizeof(a))
using namespace std; int TreeArray[MAXN], Left[MAXN], Right[MAXN], Fork[MAXN];
typedef vector<int> Ve;
vector<Ve>Edge(MAXN);
int N,M;
int key; void init()//初始化数组和
{
mem(Left); mem(Right);
mem(Fork); mem(TreeArray);
for(int i=;i<MAXN;i++)Edge[i].clear();
} void DFS(int node)//为每一个node添加一个左值和右值,表示这个节点所
{
Left[node] = key;
for(int i=;i<Edge[node].size();i++)
{
key+=;
DFS(Edge[node][i]);
}
Right[node] = key;
} int LowBit(int x)//返回的是2^k
{
return x & (x ^ (x-));
} void Edit(int k, int num)//修改节点k,如果是添加一个,代入1,删除一个代入-1
{
while(k <= N)
{
TreeArray[k] += num;
k += LowBit(k);
}
} int GetSum(int k)//得到1...k的和
{
int sum = ;
while(k>=)
{
sum += TreeArray[k];
k -= LowBit(k);
}
return sum;
} void ReadDataAndDo()
{
int a,b;
char ch;
for(int i=;i<N;i++)//输入a,b把边存放在容器里面
{
scanf("%d%d", &a, &b);
Edge[a].push_back(b);
}
key = ; DFS();//为每一个节点对应一个左边界和右边界,他自己就存放在左边界里面,而它的管辖范围就是左边界到右边界
for(int i=;i<=N;i++)
{
Fork[i] = ;//最初每个Fork上都有一个苹果
Edit(i,);//同时更新树状数组的值
}
scanf("%d%*c", &M);
for(int i=;i<M;i++)
{
scanf("%c %d%*c", &ch, &b);
if(ch == 'Q')//b的子树就是[Left[b], right[b]]
{
printf("%d\n", GetSum(Right[b]) - GetSum(Left[b]-));
}
else
{
if(Fork[b]) Edit(Left[b],-);//由于每个节点的编号就是它的左值,所以直接修改左节点
else Edit(Left[b],);
Fork[b] = !Fork[b];//变为相反的状态
}
}
} int main()
{
while(~scanf("%d", &N))
{
init();
ReadDataAndDo();
}
return ;
}
POJ3321 Apple Tree (树状数组)的更多相关文章
- POJ--3321 Apple Tree(树状数组+dfs(序列))
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22613 Accepted: 6875 Descripti ...
- POJ3321 Apple Tree(树状数组)
先做一次dfs求得每个节点为根的子树在树状数组中编号的起始值和结束值,再树状数组做区间查询 与单点更新. #include<cstdio> #include<iostream> ...
- POJ 3321 Apple Tree(树状数组)
Apple Tree Time Limit: 2000MS Memory Lim ...
- POJ 3321:Apple Tree 树状数组
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22131 Accepted: 6715 Descr ...
- E - Apple Tree(树状数组+DFS序)
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...
- POJ 3321 Apple Tree 树状数组+DFS
题意:一棵苹果树有n个结点,编号从1到n,根结点永远是1.该树有n-1条树枝,每条树枝连接两个结点.已知苹果只会结在树的结点处,而且每个结点最多只能结1个苹果.初始时每个结点处都有1个苹果.树的主人接 ...
- POJ 3321 Apple Tree (树状数组+dfs序)
题目链接:http://poj.org/problem?id=3321 给你n个点,n-1条边,1为根节点.给你m条操作,C操作是将x点变反(1变0,0变1),Q操作是询问x节点以及它子树的值之和.初 ...
- POJ 3321 Apple Tree 树状数组 第一题
第一次做树状数组,这个东西还是蛮神奇的,通过一个简单的C数组就可以表示出整个序列的值,并且可以用logN的复杂度进行改值与求和. 这道题目我根本不知道怎么和树状数组扯上的关系,刚开始我想直接按图来遍历 ...
- 3321 Apple Tree 树状数组
LIANJIE:http://poj.org/problem?id=3321 给你一个多叉树,每个叉和叶子节点有一颗苹果.然后给你两个操作,一个是给你C清除某节点上的苹果或者添加(此节点上有苹果则清除 ...
- HDU3333 Turing Tree 树状数组+离线处理
Turing Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- Vim实现批量注释的方法
调试代码的时候,免不了要批量注释/取消代码注释,很多IDE都有快捷键将你选中的代码块批量注释/取消注释的功能,那么在Vim里面如何完成这个功能呢? 方法一 块选择模式 批量注释: Ctrl + v 进 ...
- spring tx:advice 和 aop:config 配置事务
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- UVa 10498 Happiness! (线性规划)
题意 将N种食品分给m个参赛选手,一个单位的某食品给某个选手一定满足度,每个选手有一个最大满足度.为了避免浪费,分给每一个选手的食品都不超越选手的满足度.已知的各种食品的单价,求最多可以花的钱. 思路 ...
- Android 系统属性
/************************************************************************ * Android 系统属性 * 说明: * 由于需 ...
- 【英语】Bingo口语笔记(16) - 咬舌音和咬唇音的辨读
- 如何调试Android Framework?
Linus有一句名言广为人知:Read the fucking source code. 但其实,要深入理解某个软件.框架或者系统的工作原理,仅仅「看」代码是远远不够的.就拿Android Frame ...
- 深入理解Linux内核-第七章 进程调度
原文:http://blog.csdn.net/sailor_8318/article/details/2460177
- hdu 2516(斐波拉切博弈)
题意:容易理解. 分析:通过枚举寻找规律,这就是做1堆或者2堆石子博弈的技巧!当为2或者3时,肯定是第二个人赢,当为4时,先去一个石子,然后当对方面临3,于是第一个人赢, 当为5时,取1时,第二个人赢 ...
- JAVA多线程一
介绍 线程是操作系统的最小单位,一个进程可以创建多个线程. 线程有五种状态,分别是新建.就绪.运行.阻塞.死亡状态. 多线程可以提高执行效率,但是如果单线程可以完成的任务,使用多线程反而会增加不必要的 ...
- 【LeetCode】14 - Longest Common Prefix
Write a function to find the longest common prefix string amongst an array of strings. Solution: cla ...