hdu 1695 GCD(莫比乌斯反演)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6081 Accepted Submission(s): 2223
5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that
GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y.
Since the number of choices may be very large, you're only required to
output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
input consists of several test cases. The first line of the input is
the number of the cases. There are no more than 3,000 cases.
Each
case contains five integers: a, b, c, d, k, 0 < a <= b <=
100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as
described above.
1 3 1 5 1
1 11014 1 14409 9
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
hdu 1695 GCD(莫比乌斯反演)的更多相关文章
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- hdu 1695 GCD 莫比乌斯
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演模板)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695: GCD 【莫比乌斯反演】
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
随机推荐
- Servlet技术
Java Applet和Java Servlet都有一个共同特点: 它们都不是独立的应用程序,都没有main( )方法: 它们都不是由用户或者程序员直接调用,而是生存在容器中,由容器管理,Applet ...
- C语言中strdup函数使用方法
头文件:#include <string.h> 定义函数:char * strdup(const char *s); 函数说明:strdup()会先用malloc()配置与参数s 字符串相 ...
- Xcode error: conflicting types for 'XXXX'
问题描述:在main方法中调用了一个写在main方法后面的方法,比如: void main(){ A(); } void A(){} Xcode编译后就报错:conflicting types for ...
- Maven聚合与继承
分别为两种不同形式的聚合 相关代码如下: https://github.com/humeng126/account-parent_1 https://github.com/humeng126/acco ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- JavaScript屏蔽Backspace键
原文:http://www.cnblogs.com/xdp-gacl/p/3785806.html 今天在IE浏览器下发现,当把使用readonly="readonly"属性将文本 ...
- JVM系列三:JVM参数设置、分析
不管是YGC还是Full GC,GC过程中都会对导致程序运行中中断,正确的选择不同的GC策略,调整JVM.GC的参数,可以极大的减少由于GC工作,而导致的程序运行中断方面的问题,进而适当的提高Java ...
- kvm相关文章
配置KVM虚拟机的网络 Bridge和Nat方式http://www.it165.net/os/html/201503/12231.html KVM虚拟机网络配置 Bridge方式,NAT方式 htt ...
- FATAL ha.BootstrapStandby: Unable to fetch namespace information from active NN at ***
This problem (Unable to fetch namespace information from active NN) occurs, because the active namen ...
- RequireJS加载ArcGIS API for JavaScript
1.在main.js中配置ArcGIS API for JavaScript require.config({ paths : { //arcgisJS "esri": " ...