Out of Hay
Out of Hay
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13094 Accepted: 5078
Description
The cows have run out of hay, a horrible event that must be remedied immediately. Bessie intends to visit the other farms to survey their hay situation. There are N (2 <= N <= 2,000) farms (numbered 1..N); Bessie starts at Farm 1. She’ll traverse some or all of the M (1 <= M <= 10,000) two-way roads whose length does not exceed 1,000,000,000 that connect the farms. Some farms may be multiply connected with different length roads. All farms are connected one way or another to Farm 1.
Bessie is trying to decide how large a waterskin she will need. She knows that she needs one ounce of water for each unit of length of a road. Since she can get more water at each farm, she’s only concerned about the length of the longest road. Of course, she plans her route between farms such that she minimizes the amount of water she must carry.
Help Bessie know the largest amount of water she will ever have to carry: what is the length of longest road she’ll have to travel between any two farms, presuming she chooses routes that minimize that number? This means, of course, that she might backtrack over a road in order to minimize the length of the longest road she’ll have to traverse.
Input
* Line 1: Two space-separated integers, N and M.
- Lines 2..1+M: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, describing a road from A_i to B_i of length L_i.
Output
* Line 1: A single integer that is the length of the longest road required to be traversed.
Sample Input
3 3
1 2 23
2 3 1000
1 3 43
Sample Output
43
Hint
OUTPUT DETAILS:
In order to reach farm 2, Bessie travels along a road of length 23. To reach farm 3, Bessie travels along a road of length 43. With capacity 43, she can travel along these roads provided that she refills her tank to maximum capacity before she starts down a road.
Source
USACO 2005 March Silver
求最小生成树的最大边,Kruskal
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = 11000;
int n,m;
int pre[3000];
typedef struct node
{
int x;
int y;
int dis;
}K;
K Edge[MAX];
void init()
{
for(int i=1;i<=n;i++)
{
pre[i]=i;
}
}
bool cmp(node a,node b)
{
return a.dis<b.dis;
}
int Find(int x)
{
return x==pre[x]?x:pre[x]=Find(pre[x]);
}
int Kruskal()
{
int num=0,Max=0;
for(int i=0;i<m;i++)
{
int a=Find(Edge[i].x);
int b=Find(Edge[i].y);
if(a!=b)
{
num++;
pre[a]=b;
if(Max<Edge[i].dis)
{
Max=Edge[i].dis;
}
}
if(num==n-1)
{
break;
}
}
return Max;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
init();
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&Edge[i].x,&Edge[i].y,&Edge[i].dis);
}
sort(Edge,Edge+m,cmp);
printf("%d\n",Kruskal());
}
return 0;
}
Out of Hay的更多相关文章
- 洛谷P1547 Out of Hay
题目背景 奶牛爱干草 题目描述 Bessie 计划调查N (2 <= N <= 2,000)个农场的干草情况,它从1号农场出发.农场之间总共有M (1 <= M <= 10,0 ...
- 瓶颈生成树与最小生成树 POJ 2395 Out of Hay
百度百科:瓶颈生成树 瓶颈生成树 :无向图G的一颗瓶颈生成树是这样的一颗生成树,它最大的边权值在G的所有生成树中是最小的.瓶颈生成树的值为T中最大权值边的权. 无向图的最小生成树一定是瓶颈生成树,但瓶 ...
- 洛谷P2925 [USACO08DEC]干草出售Hay For Sale
题目描述 Farmer John suffered a terrible loss when giant Australian cockroaches ate the entirety of his ...
- [BZOJ1618][Usaco2008 Nov]Buying Hay 购买干草
[BZOJ1618][Usaco2008 Nov]Buying Hay 购买干草 试题描述 约翰的干草库存已经告罄,他打算为奶牛们采购H(1≤H≤50000)磅干草. 他知道N(1≤N≤100)个干草 ...
- Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集
题目链接: 题目 F. Polycarp and Hay time limit per test: 4 seconds memory limit per test: 512 megabytes inp ...
- Hay Points
Hay Points TimeLimit: 1 Second MemoryLimit: 32 Megabyte Totalsubmit: 1022 Accepted: 602 Descript ...
- BZOJ1606: [Usaco2008 Dec]Hay For Sale 购买干草
1606: [Usaco2008 Dec]Hay For Sale 购买干草 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 612 Solved: 46 ...
- POJ 2395 Out of Hay(最小生成树中的最大长度)
POJ 2395 Out of Hay 本题是要求最小生成树中的最大长度, 无向边,初始化es结构体时要加倍,别忘了init(n)并查集的初始化,同时要单独标记使用过的边数, 判断ans==n-1时, ...
- poj 2395 Out of Hay(最小生成树,水)
Description The cows have run <= N <= ,) farms (numbered ..N); Bessie starts at Farm . She'll ...
随机推荐
- 脚本:SQLServer 2008 生成某数据库中的所有索引创建脚本
--1. get all indexes from current db, place in temp table select schemaName = s.name, tablename = ob ...
- .pch头文件的添加
在工程中找Building Settings --> language -->prefix Header -->填写.pch的路径
- Lintcode: Minimum Subarray
Given an array of integers, find the subarray with smallest sum. Return the sum of the subarray. Hav ...
- 转:python webdriver API 之下拉框处理
下拉框也是 web 页面上非常常见的功能,webdriver 对于一般的下拉框处理起来也相当简单,要想定位下拉框中的内容,首先需要定位到下拉框:这样的二次定位,我们在前面的例子中已经有过使用,下面通过 ...
- iis access denied, you do not have permission.
this kind of problems are usually caused by some IIS configuration issues, like application pool set ...
- EXTJS 5 开发环境搭建
WEBstrom eclipse下载: http://www.eclipse.org/downloads/ spket 下载: 安装方式: http://wangke0611.iteye.com/bl ...
- ligerUI_入门_001_设置文本能否被编辑、事件
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 前端开发与Seo基础
网页代码优化 1:<title>标题:强调重点,重点关键词放在前面,每个页面的title尽量不相同 2:<meta keywords>关键词:列举出几个重要关键词, ...
- paper 51:图像复原
图像退化: 图像在形成.记录.处理和传输过程中,由于成像系统.记录设备.传输介质和处理方法的不完善,导致图像质量的下降,这种现象叫做图像退化. 图像复原: 就是对退化的图像进行处理,尽可能恢复出原始 ...
- linux进程自动关闭与dmesg的使用
一些应用程序,后台服务被关掉.例如内存不足等,可能是操作系统关掉的.这些日志记录在dmesg中. 存储目录:/var/log/dmesg dmesg -T 可以将时间戳转化为可以识别的时间. | he ...