Out of Hay
Out of Hay
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13094 Accepted: 5078
Description
The cows have run out of hay, a horrible event that must be remedied immediately. Bessie intends to visit the other farms to survey their hay situation. There are N (2 <= N <= 2,000) farms (numbered 1..N); Bessie starts at Farm 1. She’ll traverse some or all of the M (1 <= M <= 10,000) two-way roads whose length does not exceed 1,000,000,000 that connect the farms. Some farms may be multiply connected with different length roads. All farms are connected one way or another to Farm 1.
Bessie is trying to decide how large a waterskin she will need. She knows that she needs one ounce of water for each unit of length of a road. Since she can get more water at each farm, she’s only concerned about the length of the longest road. Of course, she plans her route between farms such that she minimizes the amount of water she must carry.
Help Bessie know the largest amount of water she will ever have to carry: what is the length of longest road she’ll have to travel between any two farms, presuming she chooses routes that minimize that number? This means, of course, that she might backtrack over a road in order to minimize the length of the longest road she’ll have to traverse.
Input
* Line 1: Two space-separated integers, N and M.
- Lines 2..1+M: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, describing a road from A_i to B_i of length L_i.
Output
* Line 1: A single integer that is the length of the longest road required to be traversed.
Sample Input
3 3
1 2 23
2 3 1000
1 3 43
Sample Output
43
Hint
OUTPUT DETAILS:
In order to reach farm 2, Bessie travels along a road of length 23. To reach farm 3, Bessie travels along a road of length 43. With capacity 43, she can travel along these roads provided that she refills her tank to maximum capacity before she starts down a road.
Source
USACO 2005 March Silver
求最小生成树的最大边,Kruskal
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = 11000;
int n,m;
int pre[3000];
typedef struct node
{
int x;
int y;
int dis;
}K;
K Edge[MAX];
void init()
{
for(int i=1;i<=n;i++)
{
pre[i]=i;
}
}
bool cmp(node a,node b)
{
return a.dis<b.dis;
}
int Find(int x)
{
return x==pre[x]?x:pre[x]=Find(pre[x]);
}
int Kruskal()
{
int num=0,Max=0;
for(int i=0;i<m;i++)
{
int a=Find(Edge[i].x);
int b=Find(Edge[i].y);
if(a!=b)
{
num++;
pre[a]=b;
if(Max<Edge[i].dis)
{
Max=Edge[i].dis;
}
}
if(num==n-1)
{
break;
}
}
return Max;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
init();
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&Edge[i].x,&Edge[i].y,&Edge[i].dis);
}
sort(Edge,Edge+m,cmp);
printf("%d\n",Kruskal());
}
return 0;
}
Out of Hay的更多相关文章
- 洛谷P1547 Out of Hay
题目背景 奶牛爱干草 题目描述 Bessie 计划调查N (2 <= N <= 2,000)个农场的干草情况,它从1号农场出发.农场之间总共有M (1 <= M <= 10,0 ...
- 瓶颈生成树与最小生成树 POJ 2395 Out of Hay
百度百科:瓶颈生成树 瓶颈生成树 :无向图G的一颗瓶颈生成树是这样的一颗生成树,它最大的边权值在G的所有生成树中是最小的.瓶颈生成树的值为T中最大权值边的权. 无向图的最小生成树一定是瓶颈生成树,但瓶 ...
- 洛谷P2925 [USACO08DEC]干草出售Hay For Sale
题目描述 Farmer John suffered a terrible loss when giant Australian cockroaches ate the entirety of his ...
- [BZOJ1618][Usaco2008 Nov]Buying Hay 购买干草
[BZOJ1618][Usaco2008 Nov]Buying Hay 购买干草 试题描述 约翰的干草库存已经告罄,他打算为奶牛们采购H(1≤H≤50000)磅干草. 他知道N(1≤N≤100)个干草 ...
- Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集
题目链接: 题目 F. Polycarp and Hay time limit per test: 4 seconds memory limit per test: 512 megabytes inp ...
- Hay Points
Hay Points TimeLimit: 1 Second MemoryLimit: 32 Megabyte Totalsubmit: 1022 Accepted: 602 Descript ...
- BZOJ1606: [Usaco2008 Dec]Hay For Sale 购买干草
1606: [Usaco2008 Dec]Hay For Sale 购买干草 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 612 Solved: 46 ...
- POJ 2395 Out of Hay(最小生成树中的最大长度)
POJ 2395 Out of Hay 本题是要求最小生成树中的最大长度, 无向边,初始化es结构体时要加倍,别忘了init(n)并查集的初始化,同时要单独标记使用过的边数, 判断ans==n-1时, ...
- poj 2395 Out of Hay(最小生成树,水)
Description The cows have run <= N <= ,) farms (numbered ..N); Bessie starts at Farm . She'll ...
随机推荐
- oracle组建:ODAC112021Xcopy_x64,在开发机上,不用安装oracle的客户端等开发
以下解决方案是为了连接远程服务器上的oracle 11g 的解决方案. 下载地址:http://www.oracle.com/technetwork/database/windows/download ...
- 续【C# 以管理员方式启动Winform,进而使用管理员控制Windows Service】
前提:在我们的域环境下,给分配了管理员级别两个账号(user0,user1). 需求:只允许一个账户运行进程"WindowsFormsApplication1": 1,)当已经运行 ...
- (Abstract Factory)抽象工厂
定义: 抽象工厂同工厂方法有相似处:都提供了对子类创建的封装,都是有工厂方法的接口实现类的中决定了子类被创建为什么对象. 不同于工厂方法之处:工厂方法创建的对象只是一个类型的子类,而抽象工厂创建的对象 ...
- layoutsubviews什么时候调用
layoutSubviews在以下情况下会被调用:1.init初始化不会触发layoutSubviews2.addSubview会触发layoutSubviews3.设置view的Frame会触发la ...
- meta标签的理解
一直习惯的使用meta标签,还真么认真理解过,至少英文意思都还没弄明白... 下面是摘自网络的解释: 互动百科: 元素可提供相关页面的元信息(meta-information),比如针对搜索引擎和更新 ...
- 2-sat按照最小字典序输出可行解(hdu1814)
Peaceful Commission Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- .net开发,html ajax开发架构之我见 bs ajax最简化法 Knock out Request,totally oo
.net开发中,无论ajax还是webform,webpage, 总免不了要和request这个静态全局,可以远程通信的对象打交道. 而对于软件来讲,按照Matin Fowler的的面向对象,可利用软 ...
- HttpContext.Current 的缺陷
了解ASP.NET的开发人员都知道它有个非常强大的对象 HttpContext,而且为了方便,ASP.NET还为它提供了一个静态属性HttpContext.Current来访问它,今天的博客打算就从H ...
- Android Studio更新升级方法(转)
自从2013 Google I/O大会之后,笔者就将android ide开发工具从eclipse迁移到Android Studio了,android studio一直在更新完善,为了与时俱进,我们当 ...
- C++之路进阶——bzoj1455(罗马游戏)
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser gryz2016 Logout 捐赠本站 Notice:由于本OJ ...