本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks。实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用residual networks赢了 ImageNet的detection, localization, 以及COCO数据集上的detection和segmentation, 那本文就简单分析下Residual Networks。

目录 
———————————— 
1. Motivation 
2. 网络结构 
3. 实验结果 
4. 重要reference


1. Motivation

作者首先抛出了这个问题, 深度神经网络是不是越深越好。 
照我们一般的经验,只要网络不训飞(也就是最早在LSTM中提出的vanishing/exploding problem),而且不过拟合, 那应该是越深越好。

但是有这么个情况,网络加深了, accuracy却下降了,称这种情况为degradation。如下图所示(详见[1]):

Cifar-10 上的training/testing error. 网络从20层加到56层,error却上升了。

按理说我们有一个shallow net,在不过拟合的情况下再往深加几层怎么说也不会比shallow的结果差,所以degradation说明不是所有网络都那么容易优化,这篇文章的motivation就是通过“deep residual network“解决degradation问题。

2. 网络结构

Shortcut Connections

其实本文想法和Highway networks(Jurgen Schmidhuber的文章)非常相似, 就连要解决的问题(degradation)都一样。Highway networks一文借用LSTM中gate的概念,除了正常的非线性映射H(x, Wh)外,还设置了一条从x直接到y的通路,以T(x, Wt)作为gate来把握两者之间的权重,如下公式所示:

y=H(x,WH)⋅T(x,WT)+x⋅(1−T(x,WT))

shortcut原意指捷径,在这里就表示越层连接,就比如上面Highway networks里从x直接到y的连接。其实早在googleNet的inception层中就有这种表示:

Residual Networks一文中,作者将Highway network中的含参加权连接变为固定加权连接,即

y=H(x,WH)⋅WT+x

Residual Learning

至此,我们一直没有提及residual networks中residual的含义。那这个“残差“指什么呢?我们想: 
如果能用几层网络去逼近一个复杂的非线性映射H(x),那么同样可以用这几层网络去逼近它的residual function:F(x)=H(x)−x,但我们“猜想“优化residual mapping要比直接优化H(x)简单。

推荐读者们还是看一下本文最后列出的这篇reference paper,本文中作者说与Highway network相比的优势在于:

x Highway Network Residual Network 评论
gate参数 有参数变量WT 没参数,定死的, 方便和没有residual的网络比较 算不上优势,参数少又data-independent,结果肯定不会是最优的,文章实验部分也对比了效果,确实是带参数的error更小,但是WT这个变量与解决degradation问题无关
关门? 有可能关门(T(x,WT)=0) 不会关门 T(x,WT)∈[0,1], 但一般不会为0

所以说这个比较还是比较牵强。。anyway,人家讲个故事也是不容易了。

34层 residual network

网络构建思路:基本保持各层complexity不变,也就是哪层down-sampling了,就把filter数*2, 网络太大,此处不贴了,大家看paper去吧, paper中画了一个34层全卷积网络, 没有了后面的几层fc,难怪说152层的网络比16-19层VGG的计算量还低。

这里再讲下文章中讲实现部分的 tricks:

  1. 图片resize:短边长random.randint(256,480)
  2. 裁剪:224*224随机采样,含水平翻转
  3. 减均值
  4. 标准颜色扩充[2]
  5. conv和activation间加batch normalization[3] 
    帮助解决vanishing/exploding问题
  6. minibatch-size:256
  7. learning-rate: 初始0.1, error平了lr就除以10
  8. weight decay:0.0001
  9. momentum:0.9
  10. 没用dropout[3]

其实看下来都是挺常规的方法。

3. 实验结果

  1. 34层与18层网络比较:训练过程中, 
    34层plain net(不带residual function)比18层plain net的error大 
    34层residual net(不带residual function)比18层residual net的error小,更比34层plain net小了3.5%(top1) 
    18层residual net比18层plain net收敛快

  2. Residual function的设置: 
    A)在H(x)与x维度不同时, 用0充填补足 
    B) 在H(x)与x维度不同时, 带WT 
    C)任何shortcut都带WT 
    loss效果: A>B>C

4. 重要reference

[1]. Highway Networks 
[2]. ImageNet Classification with Deep Convolutional Neural Networks 
[3]. Batch Normalization 
[4]. VGG

from: http://blog.csdn.net/abcjennifer/article/details/50514124

Residual Networks <2015 ICCV, ImageNet 图像分类Top1>的更多相关文章

  1. Residual Networks &lt;2015 ICCV, ImageNet 图像分类Top1&gt;

    本文介绍一下2015 ImageNet中分类任务的冠军--MSRA何凯明团队的Residual Networks.实际上.MSRA是今年Imagenet的大赢家.不单在分类任务,MSRA还用resid ...

  2. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks

    Residual Networks Welcome to the second assignment of this week! You will learn how to build very de ...

  3. Re-thinking Deep Residual Networks

    本文是对ImageNet 2015的冠军ResNet(Deep Residual Networks)以及目前围绕ResNet这个工作研究者后续所发论文的总结,主要涉及到下面5篇论文. 1. Link: ...

  4. 残差网络(Residual Networks, ResNets)

    1. 什么是残差(residual)? “残差在数理统计中是指实际观察值与估计值(拟合值)之间的差.”“如果回归模型正确的话, 我们可以将残差看作误差的观测值.” 更准确地,假设我们想要找一个 $x$ ...

  5. Residual Networks

    Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...

  6. 深度残差网(deep residual networks)的训练过程

    这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-r ...

  7. 深度学习论文笔记:Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes

    这篇文章将深度学习算法应用于机械故障诊断,采用了“小波包分解+深度残差网络(ResNet)”的思路,将机械振动信号按照故障类型进行分类. 文章的核心创新点:复杂旋转机械系统的振动信号包含着很多不同频率 ...

  8. 解析Wide Residual Networks

    Wide Residual Networks (WRNs)是2016年被提出的基于扩展通道数学习机制的卷积神经网络.对深度卷积神经网络有了解的应该知道随着网络越深性能越好,但是训练深度卷积神经网络存在 ...

  9. Convolutional Neural Network-week2编程题2(Residual Networks)

    1. Residual Networks(残差网络) 残差网络 就是为了解决深网络的难以训练的问题的. In this assignment, you will: Implement the basi ...

随机推荐

  1. SQL中的5种聚集函数

    作为一个刚毕业进入这行的菜鸟,婶婶的觉的那种大神.大牛到底是怎样炼成的啊,我这小菜鸟感觉这TMD要学的东西这多啊,然后就给自己定了许多许多要学习的东西,可是有人又不停地给你灌输:东西不在多而要精通!我 ...

  2. android webview开启html5支持

    最近做的一个小项目需要用到webview.虽然只是一个简单的网页,但是由于以前用的都只是显示本地文件,没有显示网页文件.现在需要显示网页文件,发现许多网站的webapp做的挺不错的,无论是显示还是用户 ...

  3. 【Search a 2D Matrix】cpp

    题目: Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the f ...

  4. Microsoft SQL Server 存储过程举例

    -- if SP is existed, drop it. if (object_id('InvHoldToDPS', 'P') is not null) drop proc InvHoldToDPS ...

  5. STL容器的适用情况

     转自http://hsw625728.blog.163.com/blog/static/3957072820091116114655254/ ly; mso-default-props:yes; m ...

  6. 《我是一只it小小鸟》

    <我是一只it小小鸟>一书虽然内容不多,但里面的故事极其励志,耐人寻味.虽然只花不多的时间阅读这本书,它给我的影响将会伴随一生. 他们是来自不同的院校,或本科,或半路转行:工作在不同的场所 ...

  7. JS 学习笔记--JS中的事件对象基础

    事件:JavaScript中的事件是由访问web页面用户的一系列操作引起的,比如点击鼠标,键盘按键等.当用户执行某些操作的时候再去执行一些代码. 事件模型:内联模型.脚本模型.DOM2模型 内联模型: ...

  8. 设计模式之代理模式(Proxy)

    只能指针是代理模式的一种: 智能指针实现需要注意的问题: 1.构造函数指明显示构造. 2.拷贝构造函数,先断开前一个指针,然后用之前指针的值初始化现在的指针. 3.赋值函数需要先断开之前的指针,然后释 ...

  9. Matlab求范数

    对 p = 2,这称为弗罗贝尼乌斯范数(Frobenius norm)或希尔伯特-施密特范数( Hilbert–Schmidt norm),不过后面这个术语通常只用于希尔伯特空间.这个范数可用不同的方 ...

  10. cf 61E. Enemy is weak 树状数组求逆序数(WA) 分类: Brush Mode 2014-10-19 15:16 104人阅读 评论(0) 收藏

    #include <iostream> #include <algorithm> #include <cstdio> #include <cstring> ...