斜率dp的模板总结
#include<cstdio>
#include<algorithm>
using namespace std;
long long sumt[40005],sum[40005],f[40005],q[40005];
double X(long long x)
{
return sumt[x];
}
double Y(long long x)
{
return (f[x]+sum[x]);
}
double slope(long long a,long long b)
{
return ((Y(a)-Y(b))/(X(a)-X(b)));
}
struct ben
{
long long t,r;
}a[40005],b[40005];
long long cmp(const ben &a,const ben &b)
{
return a.t>b.t;
}
int main()
{
freopen("nt2011_design.in","r",stdin);
freopen("nt2011_design.out","w",stdout);
long long l=0,r=0;
long long n,m;
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
{
scanf("%lld%lld",&a[i].t,&a[i].r);
}
sort(a+1,a+n+1,cmp);
for(long long i=1;i<=n;i++)
{
if(a[i].t==a[i+1].t)
{
a[i+1].r+=a[i].r;
a[i].r=0;
}
}
long long cnt=0;
for(long long i=1;i<=n;i++)
{
if(a[i].r!=0)
{
b[++cnt]=a[i];
}
}
long long maxt=b[1].t;
b[cnt+1].t=0;
b[cnt+1].r=0;
cnt++;
for(long long i=1;i<=cnt;i++)
{
b[i].t=maxt-b[i].t;
sumt[i]=sumt[i-1]+b[i].r;
sum[i]=sum[i-1]+b[i].t*b[i].r;
}
for(long long i=1;i<=cnt;i++)
{
while(l<r&&slope(q[l+1],q[l])<b[i].t)l++;
f[i]=f[q[l]]+b[i].t*(sumt[i]-sumt[q[l]])-(sum[i]-sum[q[l]]);
if(i!=cnt)f[i]+=m;
while(l<r&&slope(i,q[r-1])<slope(q[r-1],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[cnt]);
return 0;
}
斜率dp的模板总结的更多相关文章
- 斜率DP题目
uva 12524 题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi; 问把n个点的东西合并成k个 ...
- hdu3507 Print Article(斜率DP优化)
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it ...
- 斜率DP个人理解
斜率DP 斜率DP的一版模式:给你一个序列,至多或分成m段,每段有花费和限制,问符合情况的最小花费是多少: 一版都用到sum[],所以符合单调,然后就可以用斜率优化了,很模板的东西: 如果看不懂可以先 ...
- POJ 1260 Pearls (斜率DP)题解
思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i => dp[j ...
- bzoj4518: [Sdoi2016]征途--斜率DP
题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...
- hdu 3507 斜率dp
不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...
- 斜率dp cdq 分治
f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...
- HDU 2829 Lawrence (斜率DP)
斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...
- [kuangbin带你飞]专题二十 斜率DP
ID Origin Title 20 / 60 Problem A HDU 3507 Print Article 13 / 19 Problem B HDU 2829 Lawr ...
随机推荐
- QuartzNet 任务管理系统
最近有面试!都有问道Quartz方面的问题,之前的项目有使用过,也知道怎么用,但面试时要说出它的原理,一时半会还真说不来!查阅了一些资料先记录下来吧 Quartz.NET官网地址:https://ww ...
- VS.NET(C#)--1.3_VS2005开始
VS2005开始 开始页 1.文件系统:这是默认,把网站创建到当前物理文件系统上(可以本地或网络).此时VS2005将使用内置的Web服务器,不使用IIS运行Web应用程序.2.HTTP使用IIS处理 ...
- iview的table组件中加入超链接组件,可编辑组件,选择组件,日期组件
这篇文章主要介绍了iview的table组件中使用选择框,日期,可编辑表格,超链接等组件. 1.select选择组件 // tableColumn数组响应对象需要传入一个固定的option数组,如果该 ...
- js控制台不同的打印方式
在控制台单个输出: console.log(...):值 console.info(...):信息 console.debug(...):调试信息 console.warn(...):警告信息 con ...
- SMARTY的知识
smarty的原理: <?php class Smarty { $ldelimiter = "{";//左分隔符 $rdelimiter = "}";// ...
- 作为一名SAP从业人员,需要专门学习数学么
最近和SAP成都研究院的开发同事聊到过这个话题,Jerry来说说自己的看法. 先回忆回忆自己本科和研究生学过的数学课程.Jerry的大一生活是在电子科技大学的九里堤校区度过的,本科第一门数学课就是微积 ...
- 如何实现高性能的IO及其原理?
程序运行在内存以及IO的体现 首先普及一下常识,如图所示: 1.在整个内存空间中,跑着各种各样的程序,有Java程序.C程序,他们共用一块内存空间. 2.对于Java程序,JVM会申请一块堆空间,通过 ...
- SQL SERVER-Job中Operators搬迁脚本
选中operators按F7,然后选中对象,生成脚本 USE [msdb] GO /****** Object: Operator [DB_ITDESK] Script Date: 5/30/2019 ...
- testlink关联redmine设置
Testlink关联Redmine 公司用testlink对测试用例进行维护,redmine关系项目及bug,所以为了方便期间,将Testlink关联Redmine,方便测试用例执行后,在redmin ...
- 记录java+testng运行selenium(二)---定义元素类及浏览器
一: 元素类 整体思路: 1. 根据状态可分可见和不可见两种 2. 同一个路径可以查找单个元素或多个元素 3. 获取元素text或者指定的value值 4. selenium对元素操作有两种,一是通过 ...