斜率dp的模板总结
#include<cstdio>
#include<algorithm>
using namespace std;
long long sumt[40005],sum[40005],f[40005],q[40005];
double X(long long x)
{
return sumt[x];
}
double Y(long long x)
{
return (f[x]+sum[x]);
}
double slope(long long a,long long b)
{
return ((Y(a)-Y(b))/(X(a)-X(b)));
}
struct ben
{
long long t,r;
}a[40005],b[40005];
long long cmp(const ben &a,const ben &b)
{
return a.t>b.t;
}
int main()
{
freopen("nt2011_design.in","r",stdin);
freopen("nt2011_design.out","w",stdout);
long long l=0,r=0;
long long n,m;
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
{
scanf("%lld%lld",&a[i].t,&a[i].r);
}
sort(a+1,a+n+1,cmp);
for(long long i=1;i<=n;i++)
{
if(a[i].t==a[i+1].t)
{
a[i+1].r+=a[i].r;
a[i].r=0;
}
}
long long cnt=0;
for(long long i=1;i<=n;i++)
{
if(a[i].r!=0)
{
b[++cnt]=a[i];
}
}
long long maxt=b[1].t;
b[cnt+1].t=0;
b[cnt+1].r=0;
cnt++;
for(long long i=1;i<=cnt;i++)
{
b[i].t=maxt-b[i].t;
sumt[i]=sumt[i-1]+b[i].r;
sum[i]=sum[i-1]+b[i].t*b[i].r;
}
for(long long i=1;i<=cnt;i++)
{
while(l<r&&slope(q[l+1],q[l])<b[i].t)l++;
f[i]=f[q[l]]+b[i].t*(sumt[i]-sumt[q[l]])-(sum[i]-sum[q[l]]);
if(i!=cnt)f[i]+=m;
while(l<r&&slope(i,q[r-1])<slope(q[r-1],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[cnt]);
return 0;
}
斜率dp的模板总结的更多相关文章
- 斜率DP题目
uva 12524 题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi; 问把n个点的东西合并成k个 ...
- hdu3507 Print Article(斜率DP优化)
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it ...
- 斜率DP个人理解
斜率DP 斜率DP的一版模式:给你一个序列,至多或分成m段,每段有花费和限制,问符合情况的最小花费是多少: 一版都用到sum[],所以符合单调,然后就可以用斜率优化了,很模板的东西: 如果看不懂可以先 ...
- POJ 1260 Pearls (斜率DP)题解
思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i => dp[j ...
- bzoj4518: [Sdoi2016]征途--斜率DP
题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...
- hdu 3507 斜率dp
不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...
- 斜率dp cdq 分治
f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...
- HDU 2829 Lawrence (斜率DP)
斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...
- [kuangbin带你飞]专题二十 斜率DP
ID Origin Title 20 / 60 Problem A HDU 3507 Print Article 13 / 19 Problem B HDU 2829 Lawr ...
随机推荐
- VS.NET(C#)--2.8HTML服务器控件
HTML服务器控件 服务器不处理HTML控件,例如:<h1>.<a>超链接.<input>,直接送到客户端,由浏览器呈现. 把HTML控件转换成HTML服务器控件, ...
- TensorFlow实现自编码器及多层感知机
1 自动编码机简介 传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难 ...
- TypeScript入门一:配置TS工作环境
配置手动编译TS文件工作环境 配置webpack自动化打包编译工作环境(后面补充) 一.TypeScript入门学习引言 进入主题之前,首先说明这个系列的博客是我刚刚接触TypeScript的学习笔记 ...
- 【转】HTTP响应状态码参考簿
HTTP响应状态码参考簿 http状态返回代码 1xx(临时响应)表示临时响应并需要请求者继续执行操作的状态代码. http状态返回代码 代码 说明100 (继续) 请求者应当继续提出请求. ...
- ajax+jquery上传图片
利用ajax进行图片上传,啥也不说了,上代码~ <input type="file" id="uploadImg"> <span oncli ...
- 七年开发经验详解JVM的GC 算法
概述 GC 是 JVM 自带的功能,它能够自动回收对象,清理内存,这是 Java 语言的一大优势,但是GC绝不仅伴随着Java,相反,GC历史比Java更悠久.关于GC,我认为有四个问题需要解决: 为 ...
- 元组和range
元组 只读列表,不支持增 删 改:但是元组里的列表可以增删改 元组其实就是通过逗号(,)设定的,和小括号并没有什么必然的关系,所以当元组只有一个元素的时候,需要在元素后加个逗号 存储大量数据,有序.不 ...
- Android 通过资源名,获取资源ID
有时候我们知道一个图片的文件名,我们需要知道在R文件中,该资源的ID,使用如下方法: public static int getIdByName(Context context, String cla ...
- 个性化召回算法实践(二)——LFM算法
LFM算法核心思想是通过隐含特征(latent factor)联系用户兴趣和物品,找出潜在的主题和分类.LFM(latent factor model)通过如下公式计算用户u对物品i的兴趣: \[ P ...
- Python读excel——xlrd
Python读excel——xlrd Python读取Excel表格,相比xlwt来说,xlrd提供的接口比较多,但过程也有几个比较麻烦的问题,比如读取日期.读合并单元格内容.下面先看看基本的操作: ...