#include<cstdio>
#include<algorithm>
using namespace std;
long long sumt[40005],sum[40005],f[40005],q[40005];
double X(long long x)
{
return sumt[x];
}
double Y(long long x)
{
return (f[x]+sum[x]);
}
double slope(long long a,long long b)
{
return ((Y(a)-Y(b))/(X(a)-X(b)));
}
struct ben
{
long long t,r;
}a[40005],b[40005];
long long cmp(const ben &a,const ben &b)
{
return a.t>b.t;
}
int main()
{
freopen("nt2011_design.in","r",stdin);
freopen("nt2011_design.out","w",stdout);
long long l=0,r=0;
long long n,m;
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
{
scanf("%lld%lld",&a[i].t,&a[i].r);
}
sort(a+1,a+n+1,cmp);
for(long long i=1;i<=n;i++)
{
if(a[i].t==a[i+1].t)
{
a[i+1].r+=a[i].r;
a[i].r=0;
}
}
long long cnt=0;
for(long long i=1;i<=n;i++)
{
if(a[i].r!=0)
{
b[++cnt]=a[i];
}
}
long long maxt=b[1].t;
b[cnt+1].t=0;
b[cnt+1].r=0;
cnt++;
for(long long i=1;i<=cnt;i++)
{
b[i].t=maxt-b[i].t;
sumt[i]=sumt[i-1]+b[i].r;
sum[i]=sum[i-1]+b[i].t*b[i].r;
}
for(long long i=1;i<=cnt;i++)
{
while(l<r&&slope(q[l+1],q[l])<b[i].t)l++;
f[i]=f[q[l]]+b[i].t*(sumt[i]-sumt[q[l]])-(sum[i]-sum[q[l]]);
if(i!=cnt)f[i]+=m;
while(l<r&&slope(i,q[r-1])<slope(q[r-1],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[cnt]);
return 0;
}

斜率dp的模板总结的更多相关文章

  1. 斜率DP题目

    uva 12524 题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi; 问把n个点的东西合并成k个 ...

  2. hdu3507 Print Article(斜率DP优化)

    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it ...

  3. 斜率DP个人理解

    斜率DP 斜率DP的一版模式:给你一个序列,至多或分成m段,每段有花费和限制,问符合情况的最小花费是多少: 一版都用到sum[],所以符合单调,然后就可以用斜率优化了,很模板的东西: 如果看不懂可以先 ...

  4. POJ 1260 Pearls (斜率DP)题解

    思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i  =>  dp[j ...

  5. bzoj4518: [Sdoi2016]征途--斜率DP

    题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...

  6. hdu 3507 斜率dp

    不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...

  7. 斜率dp cdq 分治

    f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...

  8. HDU 2829 Lawrence (斜率DP)

    斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...

  9. [kuangbin带你飞]专题二十 斜率DP

            ID Origin Title   20 / 60 Problem A HDU 3507 Print Article   13 / 19 Problem B HDU 2829 Lawr ...

随机推荐

  1. QuartzNet 任务管理系统

    最近有面试!都有问道Quartz方面的问题,之前的项目有使用过,也知道怎么用,但面试时要说出它的原理,一时半会还真说不来!查阅了一些资料先记录下来吧 Quartz.NET官网地址:https://ww ...

  2. VS.NET(C#)--1.3_VS2005开始

    VS2005开始 开始页 1.文件系统:这是默认,把网站创建到当前物理文件系统上(可以本地或网络).此时VS2005将使用内置的Web服务器,不使用IIS运行Web应用程序.2.HTTP使用IIS处理 ...

  3. iview的table组件中加入超链接组件,可编辑组件,选择组件,日期组件

    这篇文章主要介绍了iview的table组件中使用选择框,日期,可编辑表格,超链接等组件. 1.select选择组件 // tableColumn数组响应对象需要传入一个固定的option数组,如果该 ...

  4. js控制台不同的打印方式

    在控制台单个输出: console.log(...):值 console.info(...):信息 console.debug(...):调试信息 console.warn(...):警告信息 con ...

  5. SMARTY的知识

    smarty的原理: <?php class Smarty { $ldelimiter = "{";//左分隔符 $rdelimiter = "}";// ...

  6. 作为一名SAP从业人员,需要专门学习数学么

    最近和SAP成都研究院的开发同事聊到过这个话题,Jerry来说说自己的看法. 先回忆回忆自己本科和研究生学过的数学课程.Jerry的大一生活是在电子科技大学的九里堤校区度过的,本科第一门数学课就是微积 ...

  7. 如何实现高性能的IO及其原理?

    程序运行在内存以及IO的体现 首先普及一下常识,如图所示: 1.在整个内存空间中,跑着各种各样的程序,有Java程序.C程序,他们共用一块内存空间. 2.对于Java程序,JVM会申请一块堆空间,通过 ...

  8. SQL SERVER-Job中Operators搬迁脚本

    选中operators按F7,然后选中对象,生成脚本 USE [msdb] GO /****** Object: Operator [DB_ITDESK] Script Date: 5/30/2019 ...

  9. testlink关联redmine设置

    Testlink关联Redmine 公司用testlink对测试用例进行维护,redmine关系项目及bug,所以为了方便期间,将Testlink关联Redmine,方便测试用例执行后,在redmin ...

  10. 记录java+testng运行selenium(二)---定义元素类及浏览器

    一: 元素类 整体思路: 1. 根据状态可分可见和不可见两种 2. 同一个路径可以查找单个元素或多个元素 3. 获取元素text或者指定的value值 4. selenium对元素操作有两种,一是通过 ...