题意:https://codeforc.es/contest/906/problem/D

计算区间的:

ai ^ ai+1 ^ ai+2.......ar 。

思路:

广义欧拉降幂:

注意是自下而上递归使用欧拉降幂,比如求:a^b^c == a^(b^c%phi(mod)+?) == a^(b^(c%phi(phi(mod))+?+?)

而不是:a^b^c == a^b^(c%phi(mod)+?) == a^(b^(c%phi(mod)+?)%phi(mod)+?)  这样本身就是不对的,次方不是这么算的。

注意:因为判断要不要+phi(mod),所有快速幂里面就要开始搞搞,自己标个flag,或者直接重定义Mod == return x>=m?x%m+m:x;

注意:快速幂里的break

 #define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#include <cstdio>//sprintf islower isupper
#include <cstdlib>//malloc exit strcat itoa system("cls")
#include <iostream>//pair
#include <fstream>//freopen("C:\\Users\\13606\\Desktop\\草稿.txt","r",stdin);
#include <bitset>
#include <map>
//#include<unordered_map>
#include <vector>
#include <stack>
#include <set>
#include <string.h>//strstr substr
#include <string>
#include <time.h>//srand(((unsigned)time(NULL))); Seed n=rand()%10 - 0~9;
#include <cmath>
#include <deque>
#include <queue>//priority_queue<int, vector<int>, greater<int> > q;//less
#include <vector>//emplace_back
//#include <math.h>
//#include <windows.h>//reverse(a,a+len);// ~ ! ~ ! floor
#include <algorithm>//sort + unique : sz=unique(b+1,b+n+1)-(b+1);+nth_element(first, nth, last, compare)
using namespace std;//next_permutation(a+1,a+1+n);//prev_permutation
#define fo(a,b,c) for(register int a=b;a<=c;++a)
#define fr(a,b,c) for(register int a=b;a>=c;--a)
#define mem(a,b) memset(a,b,sizeof(a))
#define pr printf
#define sc scanf
#define ls rt<<1
#define rs rt<<1|1
typedef long long ll;
void swapp(int &a,int &b);
double fabss(double a);
int maxx(int a,int b);
int minn(int a,int b);
int Del_bit_1(int n);
int lowbit(int n);
int abss(int a);
//const long long INF=(1LL<<60);
const double E=2.718281828;
const double PI=acos(-1.0);
const int inf=(<<);
const double ESP=1e-;
//const int mod=(int)1e9+7;
const int N=(int)1e6+; ll a[N];
map<ll,ll>mp;
long long phi(long long n)//a^(b mod phi(c)+phi(c)) mod c
{
if(mp.count(n))return mp[n];//记忆化;
long long i,rea=n,temp=n;
for(i=;i*i<=n;i++)
{
if(n%i==)
{
rea=rea-rea/i;
while(n%i==)
n/=i;
}
}
if(n>)
rea=rea-rea/n;
mp[temp]=rea;
return rea;
}
ll Mod(ll x, ll m)
{
return x>=m?x%m+m:x;
}
long long qpow(long long a,long long b,long long mod)
{
long long ans,fl=;
// ll ta=a,tb=b,tta=a;
ans=;
while(b!=)
{
if(b&)
{
if(ans*a>=mod)fl=;
ans=ans*a%mod;
}
b/=;
if(!b)break;
if(a*a>=mod)fl=;
a=a*a%mod;
}
return ans+(fl?mod:);
}
ll solve(int l,int r,ll mod)//返回l~r计算结果; 听说phi(phi(mod))~==~mod/2所有最多log次;
{
if(l==r||mod==)return Mod(a[l],mod);//任何数%1都是0,不用再算了;
return qpow(a[l],solve(l+,r,phi(mod)),mod);//假设我已经知道了l+1~r的结果:递归下去;
} int main()
{
int n;
ll p;
sc("%d%lld",&n,&p);
fo(i,,n)sc("%lld",&a[i]);
int ask;sc("%d",&ask);
while(ask--)
{
int l,r;
sc("%d%d",&l,&r);
pr("%lld\n",solve(l,r,p)%p);
}
return ;
} /**************************************************************************************/ int maxx(int a,int b)
{
return a>b?a:b;
} void swapp(int &a,int &b)
{
a^=b^=a^=b;
} int lowbit(int n)
{
return n&(-n);
} int Del_bit_1(int n)
{
return n&(n-);
} int abss(int a)
{
return a>?a:-a;
} double fabss(double a)
{
return a>?a:-a;
} int minn(int a,int b)
{
return a<b?a:b;
}

Power Tower(广义欧拉降幂)的更多相关文章

  1. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  2. ACM-数论-广义欧拉降幂

    https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...

  3. 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759

    广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...

  4. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  5. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  6. The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)

    In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...

  7. BZOJ 3884——欧拉降幂和广义欧拉降幂

    理论部分 欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$. 降幂公式: $$a^b=\begin{cases}a^ ...

  8. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  9. D - Power Tower欧拉降幂公式

    题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...

随机推荐

  1. sql 用表组织数据

    一.四种完整性约束 1.实体完整性约束:不允许出现相同记录的数据 2.域完整性约束:对字段进行限定,不得插入不符合限定的数据 3.引用完整性:表与表之间的关系 4.自定义完整性约束:开发人员自己设定对 ...

  2. anroid学习笔记(1)

    大概是2个月前,报名了慕课的android就业班课程. 算是补全了当初博客分类的最初设计. 安卓和前端比较: 1,java在安卓开发中的作用,现在我的认识是和JavaScript在前端web开发中有很 ...

  3. Centos 安装freesurfer fsl matlab 等软件---转自网络

    freesurfer: freesurfer好安装,只需要下载官网源码包,如freesurfer5.3.tar.gz 下载至本地,解压: tar zxvf freesurfer5.3.tar.gz - ...

  4. Android studio 项目支持JNI方法

    步骤: 1. build.gradle 配置如下,主要两项 ndk 和 sourceSets apply plugin: 'com.android.application' android { com ...

  5. 根据json生成java实体类

    之前一篇讲过了XML转java实体对象,使用的是JAXB技术,今天给大家推荐一个在线转json到java实体对象: http://www.bejson.com/json2javapojo/new/ 转 ...

  6. golang 多级json转map

    func main() { jsonStr := `{"isSchemaConforming":true,"schemaVersion":0,"unk ...

  7. C#编程 socket编程之unity聊天室

    上面我们创建了tcp的客户端和服务端,但是只能进行消息的一次收发.这次我们做一个unity的简易聊天室,使用了线程,可以使用多个客户端连接服务器,并且一个客户端给服务器发消息后,服务器会将消息群发给所 ...

  8. Linux手册页惯用的节名

    节 大写 描述 name NAME 显示命令名和一段简短的描述 synopsis SYNOPSIS 命令的语法 confi guration CONFI GURATION 命令配置信息 descrip ...

  9. 【MapReduce】三、MapReduce运行机制

      通过前面对map端.reduce端以及整个shuffle端工作流程的介绍,我们已经了解了MapReduce的并行运算模型,基本可以使用MapReduce进行编程,那么MapRecude究竟是如何执 ...

  10. Linux C/C++基础——内存分区

    1.内存分区 在生活中,为了提高办事效率,某个单位经常会分成N个部门,每个部门职责不同,同样,为了提高 效率,我们的内存也会被分成N个区.这里我们将内存分为五个区.也有四区模型. 首先看一下一个二进制 ...