测试用prototxt

name: "CIFAR10_quick"
layer {
name: "data"
type: "MemoryData"
top: "data"
top: "label"
memory_data_param {
batch_size: 1     #样本个数
channels: 3
height: 32
width: 32
}
}
layer {
name: "conv1"
type: "Convolution"    #卷积层
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"    #池化层
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "ReLU"      #非线性ReLU层
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool3"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 64
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "ip2"
top: "prob"
}

caffe prototxt分析的更多相关文章

  1. Caffe CommonLayer分析

    Caffe CommonLayer分析 \(Caffe\)中包含了很多通用的功能层,包含了\(concat\),\(slice\),\(split\),\(crop\),\(flip\),\(scal ...

  2. caffe源代码分析--softmax_layer.cpp

    caffe源代码分析--softmax_layer.cpp // Copyright 2013 Yangqing Jia // #include <algorithm> #include ...

  3. Caffe代码分析--crop_layer.cu

    因为要修改Caffe crop layer GPU部分的代码,现将自己对这部分GPU代码的理解总结一下,请大家多多指教! crop layer完成的功能(以matlab的方式表示):A(N,C,H,W ...

  4. Caffe Loss分析

    Caffe_Loss 损失函数为深度学习中重要的一个组成部分,各种优化算法均是基于Loss来的,损失函数的设计好坏很大程度下能够影响最终网络学习的好坏.派生于 \(LossLayer\),根据不同的L ...

  5. caffe源代码分析--math_functions.cu代码研究

    当中用到一个宏定义CUDA_KERNEL_LOOP 在common.hpp中有. #defineCUDA_KERNEL_LOOP(i,n) \ for(inti = blockIdx.x * bloc ...

  6. caffe源代码分析--data_layer.cpp

    dataLayer作为整个网络的输入层, 数据从leveldb中取. leveldb的数据是通过图片转换过来的. 网络建立的时候. datalayer主要是负责设置一些參数,比方batchsize.c ...

  7. caffe源代码分析--Blob类代码研究

    作者:linger 转自须注明转自:http://blog.csdn.net/lingerlanlan/article/details/24379689 数据成员 shared_ptr<Sync ...

  8. Caffe和py-faster-rcnn日常使用备忘录

    罗列日常使用中遇到的问题和解决办法.包括: { caffe使用中的疑惑和解释: 无法正常执行 train/inference 的情况: Caffe基础工具的微小调整,比如绘loss曲线图: 调试pyt ...

  9. 1、Caffe数据层及参数

    要运行Caffe,需要先创建一个模型(model),每个模型由许多个层(layer)组成,每个层又都有自己的参数, 而网络模型和参数配置的文件分别是:caffe.prototxt,caffe.solv ...

随机推荐

  1. [SpringBoot/SpringMVC]从Webapp下载一个大文件出现java.lang.OutOfMemoryError: GC overhead limit exceeded怎么办?

    本文示例工程下载:https://files.cnblogs.com/files/xiandedanteng/WebFileDownload20191026.rar 制作一个Webapp,让其中一个网 ...

  2. C++ STL transform

    #include<iostream>#include<vector>#include <list>#include <algorithm>#includ ...

  3. 标签 <i>

    <i>的使用 效果图

  4. CockroachDB学习笔记——[译]为什么Go语言是CockroachDB的正确选择

    原文链接:https://www.cockroachlabs.com/blog/why-go-was-the-right-choice-for-cockroachdb/ 原作者:Jessica Edw ...

  5. jmeter性能测试的指标分析和定义

    通常情况下,性能测试关注被测对象的时间与资源利用特性及稳定性.时间特性,即被测对象实现业务交易过程中所需的处理时间,从用户角度来说,越短越好.资源利用特性,即被测对象的系统资源占用情况,一般web系统 ...

  6. 怎么理解linux作业(job),与进程(process)的关系

    1.相关概念: shell :命令解释器,其实就是一个脚本语言解释器,有很多种(bash,ash,tcsh等),最常用的是bash. job(作业): 是相对shell 来说的,在shell中执行一条 ...

  7. html5新增的语义化标签极其作用

    在html5中,新增了几个语义化标签:<article>.<section>.<aside>.<hgroup>. <header>,< ...

  8. Ubuntu中 apt-get -f install 命令

    Ubuntu 下当发现可能是安装的其他软件包不兼容导致了安装包出错时,可以根据提示需要执行“sudo apt-get  -f install ”来卸载之前的冲突包. 如果安装过aptitude包,还可 ...

  9. OpenGL.资料积累

    1.又一种Qt + OpenGL 的离屏渲染方法 - liji_digital的博客 - CSDN博客.html(https://blog.csdn.net/liji_digital/article/ ...

  10. javascript学习笔记 BOM和DOM详解

    js组成 我们都知道, javascript 有三部分构成,ECMAScript,DOM和BOM,根据宿主(浏览器)的不同,具体的表现形式也不尽相同,ie和其他的浏览器风格迥异. 1. DOM 是 W ...