题意:

用  $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mod \ p)$ 的 $(i, j)$ 对数。

分析:

$11...11 = \frac{10^n-1}{9} \equiv 0(mod \ p)$ 等价于 $10^n \equiv 1(mod \ 9p)$,当 $p \neq 2,5$ 时,有 $gcd(10, 9p)=1$,因此 $10^{\phi(9p)} \equiv 1(mod \ 9p)$。我们需要找到满足等式最小的数 $d$,也是循环节,显然 $d \ | \ \phi (9p)$,直接枚举 $\phi(9p)$ 的约数验证即可。

找到循环节 $d$ 后,我们需要知道有多少对 $(i, j)$ 满足 $d \ | \ i^j$.

对 $d$ 做质因数分解, $d = p_1^{k_1}p_2^{k_2}...p_l^{k_l}$,考虑 $j$ 固定的时候,$i$ 需要满足什么条件?$i$ 必须是 $g = p_1^{\left \lceil \frac{K_1}{j} \right \rceil} p_2^{\left \lceil \frac{K_2}{j} \right \rceil} ... \ p_l^{\left \lceil \frac{K_l}{j} \right \rceil}$ 的倍数,因此共有 $\frac{n}{g}$ 个合法的 $i$。

由于 $k_i \leq 30$,所以 $j$ 增加到30以上和 $j=30$ 的结果是一样的,枚举 $j$ 从1到30,分别计算 $g$ 即可。

当 $p=2,5$ 的时候,显然答案为0.

$\phi(9p)$ 也不必用欧拉函数计算,当 $p \neq 3$ 时,3与p互素,根据欧拉函数的积性,$\phi (9p) = \phi (9)\phi (p) = 6(p-1)$.

由于快速幂会爆long long,需要用__int128(血的教训啊,wa了好多发,枯了)

代码:

#include<bits/stdc++.h>
using namespace std; typedef long long ll; ll p, m ,n;
map<ll, ll>ma; __int128 qpow(__int128 a, __int128 b, __int128 p)
{
__int128 res = ;
while(b)
{
if(b & ) res = res * a % p;
a = (a * a) % p; //a*a会爆long long
b >>= ;
}
return res;
} ll qpow2(ll a, ll b) {
ll res = ;
while(b)
{
if(b & ) res = res * a;
a = a * a;
b >>= ;
}
return res;
} //约数枚举O(√n)
ll divisor(ll n, ll p)
{
vector<ll>res;
for (ll i = ; i * i <= n; i++)
{
if (n % i == )
{
//printf("i:%lld\n", i);
if(qpow(, i, *p) % (*p) == ) return i;
if(i != n / i) res.push_back(n / i);
}
}
for(ll i = res.size()-;i >= ;i--)
{
// printf("i:%lld\n", res[i]);
if(qpow(, res[i], *p) % (*p) == ) return res[i];
}
return ;
} //整数分解O(√n)
void prime_factor(ll n)
{
for (int i = ; i * i<= n; i++)
{
while (n % i == )
{
++ma[i];
n /= i;
}
}
if (n != ) ma[n] = ; //最多只有一个素因数大于√n
} //j固定的情况下的对数
ll OneJ(int j)
{
ll res = ;
for(auto it = ma.begin();it != ma.end();it++)
{
res *= qpow2((*it).first, (ll)ceil((*it).second * 1.0 / j));
}
return n / res;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld%lld", &p, &n, &m);
//int fai = euler_phi(9*p);
ll k;
if(p == || p == )
{
printf("0\n");
continue;
} if(p == )
{
k = divisor(, p);
}
else k = divisor(*(p-), p); //printf("k:%lld\n", k); if(k == ) printf("0\n");
else
{ ma.clear();
ll res = ;
prime_factor(k); //printf("k:%lld\n", k); if(m < )
{
for(int i = ;i <= m;i++) res += OneJ(i);
}
else
{
for(int i = ;i <= ;i++) res += OneJ(i);
int tmp = OneJ();
res += tmp * (m - );
}
printf("%lld\n", res);
}
}
return ;
}

2019牛客多校第三场D BigInteger——基础数论的更多相关文章

  1. 2019牛客多校第三场 F.Planting Trees

    题目链接 题目链接 题解 题面上面很明显的提示了需要严格\(O(n^3)\)的算法. 先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 ...

  2. [2019牛客多校第三场][G. Removing Stones]

    题目链接:https://ac.nowcoder.com/acm/contest/883/G 题目大意:有\(n\)堆石头,每堆有\(a_i\)个,每次可以选其中两堆非零的石堆,各取走一个石子,当所有 ...

  3. [题解]Magic Line-计算几何(2019牛客多校第三场H题)

    题目链接:https://ac.nowcoder.com/acm/contest/883/H 题意: 给你偶数个点的坐标,找出一条直线将这n个点分成数量相等的两部分 并在这条直线上取不同的两个点,表示 ...

  4. [题解]Crazy Binary String-前缀和(2019牛客多校第三场B题)

    题目链接:https://ac.nowcoder.com/acm/contest/883/B 题意: 给你一段长度为n,且只有 ‘0’ 和 ‘1’ 组成的字符串 a[0,...,n-1].求子串中 ‘ ...

  5. 2019牛客多校第三场A Graph Games 分块思想

    题意:给你一张无向图,设s(x)为与x直接相连的点的集合,题目中有两种操作: 1:1 l r 将读入的边的序列中第l个到第r个翻转状态(有这条边 -> 没这条边, 没这条边 -> 有这条边 ...

  6. 启发式分治:2019牛客多校第三场 G题 Removing Stones

    问题可以转换为求有多少个区间数字的总和除2向下取整大于等于最大值.或者解释为有多少个区间数字的总和大于等于最大值的两倍(但是若区间数字总和为奇数,需要算作减1) 启发式分治: 首先按最大值位置分治,遍 ...

  7. 2019牛客多校第三场B-Crazy Binary String(前缀和+思维)

    Crazy Binary String 题目传送门 解题思路 把1记为1,把0记为-1,然后求前缀和,前缀和相等的就说明中间的01数一样.只要记录前缀和数值出现的位置即可更新出答案. 代码如下 #in ...

  8. 2019牛客多校第三场H-Magic Line

    Magic Line 题目传送门 解题思路 因为坐标的范围只有正负1000,且所有点坐标都是整数,所以所有点相连构成的最大斜率只有2000,而我们能够输出的的坐标范围是正负10^9.所以我们先把这n个 ...

  9. 2019牛客多校第三场J-LRU management(map+双向链表)

    LRU management 题目传送门 解题思路 用map索引对应地址,用双向链表维护序列. 代码如下 #include <bits/stdc++.h> #define INF 0x3f ...

随机推荐

  1. [转帖]hive与hbase的联系与区别:

    https://www.cnblogs.com/xubiao/p/5571176.html 原作者写的很好.. 这里面简单学习总结一下.. 都是bigdata的工具, 都是基于google的bigta ...

  2. Spring Bean装配详解(五)

    装配 Bean 的概述 前面已经介绍了 Spring IoC 的理念和设计,这一篇文章将介绍的是如何将自己开发的 Bean 装配到 Spring IoC 容器中. 大部分场景下,我们都会使用 Appl ...

  3. Ural 1029 Ministry 题解

    目录 Ural 1029 Ministry 题解 题意 题解 程序 Ural 1029 Ministry 题解 题意 给定一个\(n\times m(1\le n \le10,1\le m \le50 ...

  4. linux awk和sed工具

    慕课网链接:https://www.imooc.com/video/14508 部分示例命令 #替换passwd中的用户名和userid和gid gsed 's/\(^[a-z_-]\+\):\*:\ ...

  5. Python基础 第5章 条件、循环及其他语句(1)

    1. print和import 1.1 打印多个参数 可用 + 连接多个字符串,可保证被连接字符串前无空格: 可用sep=“_”,自定义各种分隔符: print("I"," ...

  6. 一文搞懂嵌入式uboot、kernel、文件系统的关系

    总览: 在linux系统软件架构可以分为4个层次(从低到高分别为):   1.引导加载程序         引导加载程序(Bootloader)是固化在硬件Flash中的一段引导代码,用于完成硬件的一 ...

  7. jq获取元素偏移量offset()

    解释: 1 获取匹配元素在当前视口的相对偏移. 2 返回的对象包含两个整型属性:top 和 left demo1: 获取top与left var aaa = $(".aaa "); ...

  8. MyBatis核心组件

    SqlSessionFactoryBuilder (构造器) 会根据配置或者代码来生成SqlSessionFactory SqlSessionFactory (工厂接口) 以后他来生成SqlSessi ...

  9. 映射重复导致的错误:Ambiguous handler methods mapped for HTTP path

    转自:https://cloud.tencent.com/developer/article/1372150 出现了两个名称一样的映射,会报如下错误: 原因: 解决方法: 出现Ambiguous Ma ...

  10. Go 函数编程

    函数的声明 在 Go 语言中,函数声明通用语法如下: func functionname(parametername type) returntype { // 函数体(具体实现的功能) } 函数的声 ...