title: 【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Orthogonality
  • Four Subspace
  • Orthogonal Complements
  • Fundamental Theorem of Linear Algebra
  • Combining Bases from Subspaces
  • Split

    toc: true

    date: 2017-10-17 09:28:42

Abstract: 本篇介绍正交性,向量正交,矩阵正交,子空间正交

Keywords: Orthogonality,Four Subspace,Orthogonal Complements,Fundamental Theorem of Linear Algebra ,Combining Bases from Subspaces,Split

开篇废话

这次真的是好久没写博客了,十一去了一趟湖南,感受了下山村生活,不得不说,真的能净化人心,村里的人感觉比城里人的生活的更自然,更像人。感觉城里人活的更像机器。

十一之前读的这一章内容,果不其然,只记得大概内容了,回来又重新看了一遍,又发现不少之前没发现的东西,经验一次又一次的告诉我,书要多读几遍,这句话我之前就说过,但是自己都做不到,也是惭愧。

Orthogonality

这个地方大师Gilbert写了关于AxAxAx的三个境界:

  1. This is only a number
  2. It is combination of column vectors
  3. It shows Subspaces

这个跟王国维的人生三大境界有的一拼,这里必须要展示下我的文学功底了(其实是上高中抄别人作文学会的)–"古今之成大事业、大学问者,必经过三种之境界:"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。“此第三境也。此等语皆非大词人不能道。然遽以此意解释诸词,恐为晏欧诸公所不许也。” "

差不多就这意思,对事物的追求是逐渐加深的,当我们走到了深处,木然回首,一看,线性代数也就那么回事。

不扯没用的,继续说正交(orthogonality)

正交的三个层次是

  1. 向量正交
  2. 矩阵正交
  3. 子空间正交

两个向量正交是说他们的dot product为0

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-4-1转载请标明出处

【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)的更多相关文章

  1. 【线性代数】3-6:四个子空间的维度(Dimensions of the Four Subspaces)

    title: [线性代数]3-6:四个子空间的维度(Dimensions of the Four Subspaces) categories: Mathematic Linear Algebra ke ...

  2. OpenCASCADE Quaternion

    OpenCASCADE Quaternion eryar@163.com Abstract. The quaternions are members of a noncommutative divis ...

  3. 旋转矩阵 The Rotation Matrix

    参考: http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/how-does ...

  4. 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算

    http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...

  5. [译]学习IPython进行交互式计算和数据可视化(四)

    第三章 使用Python进行数字计算 尽管IPython强大的shell和扩展后的控制台能被任何Python程序员使用,但是这个工具最初是科学奖为科学家设计的.它的主要设计目标就是为使用Python进 ...

  6. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  7. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  8. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  9. 掌握numpy(四)

    数组的累加(拼接) 在前面讲了使用切片方法能够对数组进行切分,使用copy对切片的数组进行复制,那么数组该如何拼接呢? a1 = np.full((2,3),1)#填充数组 a2 = np.full( ...

随机推荐

  1. django的admin密码忘记了怎么办?一分钟解决!!

    django-admin确实是在实际开发中很方便,然后项目开发一段时间放到一边,等你再去玩你当初的项目的时候,可能抱歉你的admin密码忘记了,其实解决办法有很多种,我直说最快的一种,直接重新建立一个 ...

  2. 怎样理解document的快捷方式属性

    所谓 "快捷方式属性" , 也就是说它们不是必须的, 只是在操作dom时可以更为方便地获取. 主要有下面8个: 1. 获取当前文档所属的window对象: document.def ...

  3. 8-MySQL DBA笔记-测试基础

    第三部分 测试篇 测试需要掌握的知识面很广泛,本篇的关注点是数据库的性能测试和压力测试,对于其他领域的测试,由于涉猎不多,笔者就不做叙述了.DBA的工作职责之一就是评估软硬件,这往往是一项很耗时的工作 ...

  4. 在realm中动态查询用户的权限&角色

    @Controller @Scope("prototype") @Namespace("/") @ParentPackage("struts-defa ...

  5. 【web安全】浅谈web安全之XSS

    XSS定义 XSS, 即为(Cross Site Scripting), 中文名为跨站脚本, 是发生在目标用户的浏览器层面上的,当渲染DOM树的过程成发生了不在预期内执行的JS代码时,就发生了XSS攻 ...

  6. 在eclipse导入项目的步骤

    1. Import 2. Next 3. 确定  选中copy projects into workspace    Finish 这样项目就导入进来了. 4.导入jar包 Configure Bui ...

  7. SAS.EnhancedEditor.dll 已加载,但找不到入口点DLLRegisterServer

    SAS.EnhancedEditor.dll 已加载,但找不到入口点DLLRegisterServer 重新安装EnhancedEditor 安装Microsoft.NET Framework 3.5 ...

  8. Python学习记录4-列表、元祖和集合

    list列表 一组由有序数据组成的序列 数据有先后顺序 数据可以不是一类数据 list的创建 直接创建,用中括号创建,内容直接用英文逗号隔开 使用list创建 列表包含单个字符串的时候是一个特例 # ...

  9. PPP协议解析一

    转:http://blog.csdn.net/yangzheng_yz/article/details/11526475 在网上搜集了一些有关PPP的资料,整理了一下,不能说是原创,仅供大家学习研究. ...

  10. Hadoop_16_MapRduce_MapTask并行度(切片)的决定机制

    MapTask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度那么,mapTask并行实例是否越多 越好呢?其并行度又是如何决定呢?Mapper数量由输入文件的数目.大小及配置参 ...