#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef long long ll;
typedef pair<int,int> Pii;
const ll mod=;
const int maxn = 2e3+;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head
int x[maxn],y[maxn];
int main(){ int n,k;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
ll sum=;
for(int i=;i<=n;i++){ ll fz=y[i],fm=;
for(int j=;j<=n;j++){ if(j==i) continue;
fz=(fz*(k-x[j])%mod+mod)%mod;
fm=(fm*(x[i]-x[j])%mod+mod)%mod;
}
fm=powmod(fm,mod-);
sum=(sum+fz*fm%mod)%mod;
}
printf("%lld\n",sum);
}

P4781 拉格朗日插值的更多相关文章

  1. P4781 【模板】拉格朗日插值

    P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...

  2. luogu P4781 【模板】拉格朗日插值

    嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...

  3. Luogu P4781【模板】拉格朗日插值

    洛谷传送门 板题-注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nl ...

  4. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  5. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  6. 快速排序 and 拉格朗日插值查找

    private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...

  7. BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值

    传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...

  8. 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值

    题目大意 ​ 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...

  9. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

随机推荐

  1. 2019牛客多校四 E. triples II (容斥)

    大意: 给定$n,a$, 求$n$个$3$的倍数, $or$和为$a$的方案数. 简单容斥题 可以求出$f_{x,y}$表示所有$3$的倍数中, 奇数位不超过$x$个$1$, 偶数位不超过$y$个$1 ...

  2. diverta 2019 Programming Contest

    A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...

  3. 安装本地jar包

    (1)安装在本地maven库 假设我们需要引入的包为 myjar-1.0.jar (1.1)打开cmd,进入myjar-1.0.jar所在的目录 (1.2)执行如下命令:mvn install:ins ...

  4. [Vue]避免 v-if 和 v-for 用在同一个元素上

    一般我们在两种常见的情况下会倾向于这样做: 情形1:为了过滤一个列表中的项目 (比如 v-for="user in users" v-if="user.isActive& ...

  5. 雷达无线电系列(二)经典CFAR算法图文解析与实现(matlab)

    一,CFAR基础知识介绍 简介 恒虚警检测技术是指雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术. 前提 由于接收机输出端中肯定存有噪声(包括大气噪声.人为 ...

  6. centos安装mysql(for 小白)

    安装前提: 安装号centos.SecureCRT 安装准备: centos自带数据库Mariadb,先将其移除 下载mysql: 镜像网址:http://mirrors.sohu.com/mysql ...

  7. SpringCloud"灰度部署"——动态刷新网关配置

    通过Acutator和SpringCloudConfig完成"灰度部署"——动态刷新网关路由配置 先声明下,我这个可能是冒牌的灰度部署,技术有限,纯粹个人笔记分享. 前段时间接到了 ...

  8. modelsim仿真xilinx ram输出均为0

    现象 在vivado2018.3下生成了RAM IP,丢到modelsim中仿真发现doutb输出均为0.调整AB端口的时钟速率,发现低于5ns不行,输出为0.但5ns以上正常. 解决方法 比对了vi ...

  9. c#NPOI导出2007版本excel

    2003和2007版本区别: HSSFWorkbook(2003) IWorkbook(2007版本) 写完之后会有个问题,导出会报错[流已关闭]. NPOI生产.xlsx文件件时,在使用book.W ...

  10. SAP官方发布的ABAP编程规范

    最近有朋友在公众号后台给我留言,"Jerry啊,你最近写的都是一些SAP研究院里面用到的新技术,能不能写点SAP传统的开发技术比如ABAP相关的东西"? 其实Jerry在刚开始写这 ...