P4781 拉格朗日插值
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef long long ll;
typedef pair<int,int> Pii;
const ll mod=;
const int maxn = 2e3+;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head
int x[maxn],y[maxn];
int main(){ int n,k;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
ll sum=;
for(int i=;i<=n;i++){ ll fz=y[i],fm=;
for(int j=;j<=n;j++){ if(j==i) continue;
fz=(fz*(k-x[j])%mod+mod)%mod;
fm=(fm*(x[i]-x[j])%mod+mod)%mod;
}
fm=powmod(fm,mod-);
sum=(sum+fz*fm%mod)%mod;
}
printf("%lld\n",sum);
}
P4781 拉格朗日插值的更多相关文章
- P4781 【模板】拉格朗日插值
P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...
- luogu P4781 【模板】拉格朗日插值
嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...
- Luogu P4781【模板】拉格朗日插值
洛谷传送门 板题-注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nl ...
- Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值
The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...
- 常系数齐次线性递推 & 拉格朗日插值
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...
- 快速排序 and 拉格朗日插值查找
private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...
- BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值
传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...
- 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值
题目大意 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
随机推荐
- 微信小程序页面滚动到指定位置
页面上有一个元素或者组件,id 为 comment 则: var me = this; var query = wx.createSelectorQuery().in(me); query.selec ...
- .NET Core api部署到IIS上405的问题
今天部署到iis 服务器上,api的put请求一直报405.其他像get post都没问题. google了半天,找到两种解决方案,亲测都可以.但我个人认为不是最理想的解决方案. 1.IIS拒绝PUT ...
- spring源码(1)---idea基础环境搭建
一.环境准备 1. jdk1.8.1 做java开发的这个应该能自己找到 2.gradle-4.9 https://services.gradle.org/distributions/ 没用过grad ...
- DRF 01
目录 DRF 接口 概念 YApi接口文档 Postman接口测试 RESTful接口规范 URL设计 响应结果 响应状态码 数据状态码 数据状态信息 数据本身 五大请求方式 简单实现 DRF drf ...
- Python 多进程拷贝文件夹案例
import os import multiprocessing def copy_file(q, file_name, old_folder_name, new_folder_name): &quo ...
- springboot和Redis整合
springboot简化了许多的配置,大大提高了使用效率.下面介绍一下和Redis整合的一些注意事项. 首先介绍单机版的redis整合. 1.第一步当然是导入依赖 <dependency> ...
- CentOS7安装CDH 第二章:CentOS7各个软件安装和启动
相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...
- CodeForces 822C Hacker, pack your bags!
题意 给出一些闭区间(始末+代价),选取两段不重合区间使长度之和恰为x且代价最低 思路 相同持续时间的放在一个vector中,内部再对起始时间排序,从后向前扫获取对应起始时间的最优代价,存在minn中 ...
- DoD与TCP/IP
DoD与TCP/IP都是协议栈. 什么是协议栈? 就是一套软件,默认安装完Windows就有,可以卸载再安装.把他卸载了,你就不能上网. 数据的封装以及解封装有网卡以及绑定的TCP/IP协议栈完成 A ...
- python-----将图片与标注的xml坐标水平翻转
我们做机器学习的时候,总会用到很多训练集,然后我们的数据比较少的时候,就可以将图片翻转标注.代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # ...