[BJOI2015]树的同构 && 树哈希教程
有根树的哈希
离散数学中对树哈希的描述在这里。大家可以看看。
判断有根树是否同构,可以考虑将有根树编码。而编码过程中,要求保留树形态的特征,同时忽略子树顺序的不同。先来看一看这个方法:
不妨令一棵树的编码是个字符串\(T\)。
对于一个点\(u\),先求出\(u\)所有\(son_u\)的编码\(f_{son_u}\),然后将这些编码按字典序从小到大排序得到\(g_{1\cdots k}\)。那么\(f_u="0"+\sum\limits g_i+"1"\)。
令\(T\)的编码为根节点的编码。
通过解码的方式可以验证这个算法的正确性。
这个只是树的编码,并不算是树的哈希。这个编码保证了正确性。而实际上,我们应用的时候,通常不会,也不允许这样做(时间空间都吃不消)。我们通常会采用数值的操作和取模的方法。而实际上,这个数值的操作要尽可能满足保留树形态的特征,同时忽略子树顺序的不同。加法、异或、排序等都是可以的。
树哈希的方法非常多,OIwiki上有三种常见的做法。
无根树的哈希
一般的,通过选定根将无根树转成有根树,从而实现无根树的编码。而根一般选定为数的中心。如果有两个中心,就选定编码较小中心为根。对于哈希也是差不多的道理。
对于这道题,由于数据范围十分小,所以直接暴力编码,map判重即可。
#include <bits/stdc++.h>
using namespace std;
const int Maxn = 60;
struct edge {
int To, Next;
edge() {}
edge( int _To, int _Next ) : To( _To ), Next( _Next ) {}
};
int Start[ Maxn ], Used;
edge Edge[ Maxn << 1 ];
inline void AddEdge( int x, int y ) {
Edge[ ++Used ] = edge( y, Start[ x ] );
Start[ x ] = Used;
return;
}
map< string, int > Map;
string A[ Maxn ], B[ Maxn ], S;
int n, m, T[ Maxn ];
int Cnt, Rt[ Maxn ];
int Dfs1( int u, int Fa ) {
int Size = 1, IsR = 1;
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( v == Fa ) continue;
int T = Dfs1( v, u );
if( T > n / 2 ) IsR = 0;
Size += T;
}
if( n - Size > n / 2 ) IsR = 0;
if( IsR ) Rt[ ++Cnt ] = u;
return Size;
}
void Cal( int u, int Fa ) {
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( v == Fa ) continue;
Cal( v, u );
}
A[ u ] = "0";
int Cnt = 0;
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( v == Fa ) continue;
B[ ++Cnt ] = A[ v ];
}
sort( B + 1, B + Cnt + 1 );
for( int i = 1; i <= Cnt; ++i )
A[ u ] = A[ u ] + B[ i ];
A[ u ] = A[ u ] + "1";
return;
}
int main() {
scanf( "%d", &m );
for( int i = 1; i <= m; ++i ) {
memset( Start, 0, sizeof( Start ) );
Used = 0;
scanf( "%d", &n );
for( int j = 1; j <= n; ++j ) {
int x;
scanf( "%d", &x );
if( x == 0 ) continue;
AddEdge( x, j );
AddEdge( j, x );
}
Cnt = 0;
Dfs1( 1, 0 );
Cal( Rt[ 1 ], 0 );
S = A[ Rt[ 1 ] ];
for( int j = 2; j <= Cnt; ++j ) {
Cal( Rt[ j ], 0 );
if( A[ Rt[ j ] ] < S )
S = A[ Rt[ j ] ];
}
if( Map.find( S ) == Map.end() ) Map[ S ] = i;
printf( "%d\n", Map[ S ] );
}
return 0;
}
[BJOI2015]树的同构 && 树哈希教程的更多相关文章
- bzoj4337: BJOI2015 树的同构 树哈希判同构
题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...
- BZOJ 4337: BJOI2015 树的同构 树hash
4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...
- BZOJ4337:[BJOI2015]树的同构(树hash)
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...
- [BZOJ4337][BJOI2015]树的同构(树的最小表示法)
4337: BJOI2015 树的同构 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1023 Solved: 436[Submit][Status ...
- 【BZOJ4474】isomorphism(树的同构,哈希)
题意:一个无向树的度数为 2的结点称为假结点,其它结点称为真结点.一个无向树的简化树其结点由原树的全体真结点组成,两个真结点之间有边当且仅当它们在原树中有边,或者在原树中有一条联结这两个结点的路,其中 ...
- BZOJ.4337.[BJOI2015]树的同构(树哈希)
BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...
- BZOJ4337 树的同构 (树哈希)(未完成)
样例迷,没过 交了30pts #include <cstdio> #include <iostream> #include <cstring> #include & ...
- [BJOI2015]树的同构
嘟嘟嘟 判断树的同构的方法就是树上哈希. 如果树是一棵有根树,那么只要从根节点出发dfs,每一个节点的哈希值等于按传统方式算出来的子树的哈希值的结果.需要注意的是,算完子树的哈希值后要先排序再加起来, ...
- 【BZOJ4337】BJOI2015 树的同构 括号序列
[BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱 ...
随机推荐
- Django+celery+rabbitmq实现邮件发送
一.环境 1.pip包 amqp==2.4.2 anyjson==0.3.3 billiard==3.6.0.0 celery==4.3.0 Django==2.2 dnspython==1.16.0 ...
- 无障碍开发(四)之ARIA aria-***状态值
aria-***状态值
- 题解 P2859 【[USACO06FEB]摊位预订Stall Reservations】
题目链接: https://www.luogu.org/problemnew/show/P2859 思路: 首先大家会想到这是典型的贪心,类似区间覆盖问题的思路,我们要将每段时间的左端点从小到大排序, ...
- Java对象的序列化和反序列化介绍
一.什么序列化和反序列化以及作用: java序列化是指把java对象转换为字节序列的过程,而java反序列化是指把字节序列恢复为java对象的过程 1.序列化: 1)对象序列化的最主要的用处就是在传递 ...
- 一点css 基础
css 行内样式优先度最高 margin 属性 为声明外边距 如图 顺序依次为上右下左
- docker容器生态技术链
图片来源:https://blog.51cto.com/liuleis/2067116 说明:学习Docker容器技术,先纵向了解大致内容架构,再横向逐一分解涉及的各项技术内容,对容器所涉及的技术体系 ...
- mysql 知识整理
前言 安装 使用 关于mysql程式的linux命令 启动mysqld 检查端口是否运行 查看数据库程式相关信息 查看mysql版本 查看配置文件位置 登陆mysql 修改密码 SQL命令 查看数据库 ...
- 学习--Spring IOC源码精读
Spring核心IOC的源码分析(转载) 原文地址:https://javadoop.com/post/spring-ioc#toc11 转载地址:https://blog.csdn.net/nuom ...
- windows 下 node 入门
node js node -v npm -v nvm v nvm list npm install * -g npm install express -g npm install -g expres ...
- SQL语句复习【专题二】
SQL语句复习[专题二] 单行函数(日期.数学.字符串.通用函数.转换函数)多行函数.分组函数.多行数据计算一个结果.一共5个.sum(),avg(),max(),min(),count()分组函数 ...