题目链接

有根树的哈希

离散数学中对树哈希的描述在这里。大家可以看看。

判断有根树是否同构,可以考虑将有根树编码。而编码过程中,要求保留树形态的特征,同时忽略子树顺序的不同。先来看一看这个方法:

不妨令一棵树的编码是个字符串\(T\)。

对于一个点\(u\),先求出\(u\)所有\(son_u\)的编码\(f_{son_u}\),然后将这些编码按字典序从小到大排序得到\(g_{1\cdots k}\)。那么\(f_u="0"+\sum\limits g_i+"1"\)。

令\(T\)的编码为根节点的编码。

通过解码的方式可以验证这个算法的正确性。

这个只是树的编码,并不算是树的哈希。这个编码保证了正确性。而实际上,我们应用的时候,通常不会,也不允许这样做(时间空间都吃不消)。我们通常会采用数值的操作和取模的方法。而实际上,这个数值的操作要尽可能满足保留树形态的特征,同时忽略子树顺序的不同。加法、异或、排序等都是可以的。

树哈希的方法非常多,OIwiki上有三种常见的做法

无根树的哈希

一般的,通过选定根将无根树转成有根树,从而实现无根树的编码。而根一般选定为数的中心。如果有两个中心,就选定编码较小中心为根。对于哈希也是差不多的道理。

对于这道题,由于数据范围十分小,所以直接暴力编码,map判重即可。

#include <bits/stdc++.h>
using namespace std; const int Maxn = 60;
struct edge {
int To, Next;
edge() {}
edge( int _To, int _Next ) : To( _To ), Next( _Next ) {}
};
int Start[ Maxn ], Used;
edge Edge[ Maxn << 1 ];
inline void AddEdge( int x, int y ) {
Edge[ ++Used ] = edge( y, Start[ x ] );
Start[ x ] = Used;
return;
} map< string, int > Map;
string A[ Maxn ], B[ Maxn ], S;
int n, m, T[ Maxn ];
int Cnt, Rt[ Maxn ]; int Dfs1( int u, int Fa ) {
int Size = 1, IsR = 1;
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( v == Fa ) continue;
int T = Dfs1( v, u );
if( T > n / 2 ) IsR = 0;
Size += T;
}
if( n - Size > n / 2 ) IsR = 0;
if( IsR ) Rt[ ++Cnt ] = u;
return Size;
} void Cal( int u, int Fa ) {
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( v == Fa ) continue;
Cal( v, u );
}
A[ u ] = "0";
int Cnt = 0;
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( v == Fa ) continue;
B[ ++Cnt ] = A[ v ];
}
sort( B + 1, B + Cnt + 1 );
for( int i = 1; i <= Cnt; ++i )
A[ u ] = A[ u ] + B[ i ];
A[ u ] = A[ u ] + "1";
return;
} int main() {
scanf( "%d", &m );
for( int i = 1; i <= m; ++i ) {
memset( Start, 0, sizeof( Start ) );
Used = 0;
scanf( "%d", &n );
for( int j = 1; j <= n; ++j ) {
int x;
scanf( "%d", &x );
if( x == 0 ) continue;
AddEdge( x, j );
AddEdge( j, x );
}
Cnt = 0;
Dfs1( 1, 0 );
Cal( Rt[ 1 ], 0 );
S = A[ Rt[ 1 ] ];
for( int j = 2; j <= Cnt; ++j ) {
Cal( Rt[ j ], 0 );
if( A[ Rt[ j ] ] < S )
S = A[ Rt[ j ] ];
}
if( Map.find( S ) == Map.end() ) Map[ S ] = i;
printf( "%d\n", Map[ S ] );
}
return 0;
}

[BJOI2015]树的同构 && 树哈希教程的更多相关文章

  1. bzoj4337: BJOI2015 树的同构 树哈希判同构

    题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...

  2. BZOJ 4337: BJOI2015 树的同构 树hash

    4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...

  3. BZOJ4337:[BJOI2015]树的同构(树hash)

    Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...

  4. [BZOJ4337][BJOI2015]树的同构(树的最小表示法)

    4337: BJOI2015 树的同构 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1023  Solved: 436[Submit][Status ...

  5. 【BZOJ4474】isomorphism(树的同构,哈希)

    题意:一个无向树的度数为 2的结点称为假结点,其它结点称为真结点.一个无向树的简化树其结点由原树的全体真结点组成,两个真结点之间有边当且仅当它们在原树中有边,或者在原树中有一条联结这两个结点的路,其中 ...

  6. BZOJ.4337.[BJOI2015]树的同构(树哈希)

    BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...

  7. BZOJ4337 树的同构 (树哈希)(未完成)

    样例迷,没过 交了30pts #include <cstdio> #include <iostream> #include <cstring> #include & ...

  8. [BJOI2015]树的同构

    嘟嘟嘟 判断树的同构的方法就是树上哈希. 如果树是一棵有根树,那么只要从根节点出发dfs,每一个节点的哈希值等于按传统方式算出来的子树的哈希值的结果.需要注意的是,算完子树的哈希值后要先排序再加起来, ...

  9. 【BZOJ4337】BJOI2015 树的同构 括号序列

    [BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱 ...

随机推荐

  1. centos7下NFS配置

    NFS是Network File System的缩写,即网络文件系统.客户端通过挂载的方式将NFS服务器端共享的数据目录挂载到本地目录下. 前言 四台机器: ,218三台机器的/root/filedi ...

  2. eclipse 创建Java web项目 Cannot change version of project facet Dynamic web module to xxx

    问题描述: 用Eclipse创建Java web项目时选择的Artifact Id为maven-artchetype-webapp,由于这个archetype比较老,用的servlet还是2.3的. ...

  3. GNU g++常用编译选项用法

    GNU g++常用编译选项用法 本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u/30686/showart_1210761.html GCC ...

  4. 与 QWidget 有关的 Qt 可视化组件的继承关系图

    与 QWidget 有关的 Qt 可视化组件的继承关系图

  5. 帝国cms 权限操作

    <? if ($classid==5 || $classid==6 || $classid==7 || $classid==8 || $classid==9 || $classid==10 || ...

  6. \ n是将输出换行符的javascript的转义符。

    \ n是将输出换行符的javascript的转义符.<br/>是表示新文本行的HTML标签.JavaScript是一种脚本语言,而HTML是一种标记语言.如果使用javascript的文档 ...

  7. Caffe Blob测试

    本例子来源于<21天实战Caffe> 代码如下: #include <vector> #include <iostream> #include <caffe/ ...

  8. MongoDB学习笔记,基础+增删改查+索引+聚合...

    一 基础了解 对应关系 -> https://docs.mongodb.com/manual/reference/sql-comparison/ database -> database ...

  9. SQL*Loader 的使用sqlldr和sqluldr2方法详解

    oracle数据导出工具sqluldr2可以将数据以csv.txt等格式导出,适用于大批量数据的导出,导出速度非常快.导出后可以使用oracle loader工具将数据导入.简介:Sqluldr2:专 ...

  10. payload免杀之Installutil.exe&csc.exe利用

    0x00 前言 C#的在Windows平台下的编译器名称是Csc.exe.Installutil.exe工具是一个命令行实用程序,允许您通过执行指定程序集中的安装程序组件来安装和卸载服务器资源,可以执 ...