题目链接

题意 : 给出 N 个糖果、老师按顺序给 1~N 编号的学生分配糖果、每个学生要么不分、要么最少分一个、且由于是按顺序发放、那么对于某个有分到糖果的编号为 i 的学生、则 1~(i-1) 这些学生都最少有一个糖果、老师必须分完 N 个糖果、问你最后不同的分配方式有多少种

分析 :

队友根据组合计数的方法推出了答案是 2^(N-1)

你也可以通过打表的方式来找到这个规律

但是这里 N 很大、不能直接进行快速幂运算

需要进行降幂处理

有一个男人、他叫欧拉

提出了一个降幂公式

a^n mod c = a^( n % φ(c) + φ(c) ) mod c

条件是 n ≥ φ(c)

注 : φ(n) 是欧拉函数的意思、代表从 1 ~ n 与 n 互质的数的个数

当 n 为质数的时候 φ(n) = n-1

所以只要在输入的时候、将指数适当进行模运算处理、就可以通过快速幂通过此题

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;
;
;
char str[maxn];

LL pow_mod(LL a, LL b)
{
    a %= mod;
    LL ret = 1LL;
    while(b){
        ) ret = ret * a % mod;
        a = a * a % mod;
        b >>= ;
    }return ret;
}

int main(void){__stTIME();__IOPUT();

    int nCase;
    sci(nCase);

    while(nCase--){
        scs(str);
        int len = strlen(str);

        LL Index = ;
        ; i<len; i++)
            Index = ((Index * ) + (str[i]-);

        printf( <  ?  : Index-));
    }

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

2018 焦作网络赛 G Give Candies ( 欧拉降幂 )的更多相关文章

  1. ACM-ICPC 2018 焦作网络赛

    题目顺序:A F G H I K L 做题链接 A. Magic Mirror 题意:判断 给出的 字符串 是否等于"jessie",需要判断大小写 题解:1.用stl库 tolo ...

  2. 牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板

    链接:https://www.nowcoder.com/acm/contest/181/F来源:牛客网 题目描述 给出一个长度为n的序列,你需要计算出所有长度为k的子序列中,除最大最小数之外所有数的乘 ...

  3. 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)

    There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...

  4. 2018焦作网络赛Give Candies

    一开始忽略了欧拉定理指数部分是modphi(n-1)没有memset,减法后面没加0:

  5. 2018焦作网络赛Mathematical Curse

    题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...

  6. 2018青岛网络赛G - Couleur 区间上的启发式合并

    题意:给出\(a[1...n]\),共\(n\)次操作,每次删除一个位置\(p_i\)(强制在线),此时区间会变为两个分离的区间,求每次操作的最大区间逆序对 首先要知道必要的工具,按权值建立的主席树可 ...

  7. 2018焦作网络赛 - Poor God Water 一道水题的教训

    本题算是签到题,但由于赛中花费了过多的时间去滴吧格,造成了不必要的浪费以及智商掉线,所以有必要记录一下坑点 题意:方格从1到n,每一格mjl可以选择吃鱼/巧克力/鸡腿,求走到n格时满足 1.每三格不可 ...

  8. 2018 焦作网络赛 K Transport Ship ( 二进制优化 01 背包 )

    题目链接 题意 : 给出若干个物品的数量和单个的重量.问你能不能刚好组成总重 S 分析 : 由于物品过多.想到二进制优化 其实这篇博客就是存个二进制优化的写法 关于二进制优化的详情.百度一下有更多资料 ...

  9. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

随机推荐

  1. 嵌套泛型参数IList<IList<Object>>如何传参

    在调用第三方库的时候,有这么一个泛型参数,如下图: 按照经验,使用两个List嵌套声明变量即可: IList<IList<AnnotatedPoint2D>>  outImag ...

  2. Ruby Rails学习中:注册表单,注册失败,注册成功

    接上篇 一. 注册表单 用户资料页面已经可以访问了, 但内容还不完整.下面我们要为网站创建一个注册表单. 1.使用 form_for 注册页面的核心是一个表单, 用于提交注册相关的信息(名字.电子邮件 ...

  3. python-open函数

    open函数,该函数用于文件处理 操作文件时,一般需要经历如下步骤: 打开文件 操作文件 一.打开文件 1 文件句柄 = open('文件路径', '模式') 打开文件时,需要指定文件路径和以何等方式 ...

  4. 史上最全的spark面试题——持续更新中

    史上最全的spark面试题——持续更新中 2018年09月09日 16:34:10 为了九亿少女的期待 阅读数 13696更多 分类专栏: Spark 面试题   版权声明:本文为博主原创文章,遵循C ...

  5. jvm调试相关:jmap失效下找到alternatives神器

    1.使用 jmap <pid>出现的错误日志:很明显是版本问题 Error attaching to process: sun.jvm.hotspot.runtime.VMVersionM ...

  6. ASP.NET Core如何限制请求频率

    原文:ASP.NET Core如何限制请求频率 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.ne ...

  7. centos7.4 安装 .net core 2.2

    Step 1:首先注册Microsoft签名密钥,每台机器注册一次就行. sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/pack ...

  8. 什么是IOC和什么是AOP,依赖注入(DI)和Ninject,Ninject

    我们所需要的是,在一个类内部,不通过创建对象的实例而能够获得某个实现了公开接口的对象的引用.这种“需要”,就称为DI(依赖注入,Dependency Injection),和所谓的IoC(控制反转,I ...

  9. 转载: Linux查看系统开机时间

    转自: https://www.cnblogs.com/kerrycode/p/3759395.html 查看Linux系统运行了多久时间,此时需要知道上次开机启动时间: 有时候由于断电或供电故障突然 ...

  10. php--常见算法2

    <?php function zhi($number){ $f1=1; $f2=1; for($i=3;$i<=$number;$i++){ //前一个的前一个值+前一个值 $f3=$f1 ...