随着硬件水平的不断提高,需要处理数据的大小也越来越大。大家都知道,现在大数据有多火爆,都认为21世纪是大数据的世纪。当然我也想打上时代的便车。所以今天来学习一下大数据存储和处理。

随着数据的不断变大,数据的处理就出现了瓶颈:存储容量,读写速率,计算效率等等。

google不愧是走在世界前列的大公司,为了处理大数据,google提出了大数据技术,MapReduce,BigTable和GFS。

这个技术给大数据处理带来了巨大的变革。

1.降低了大数据处理的成本,用PC机就可以处理大数据,而不需要采用大型机和高端设备进行存储。

2.将硬件故障视为常态的基础上,采用了软件容错的方法,保证软件的可靠性。

3.简化并行分布式计算,不需要控制节点的同步和数据的交换,降低了大数据处理的门槛。

虽然google的技术非常好,但是google并没有将技术开源。不过值得庆幸的是,模仿google大数据的开源实现,Hadoop的出现了。

Hadoop是什么

Hadoop主要完成两件事,分布式存储和分布式计算。

Hadoop主要由两个核心部分组成:

1.HDFS:分布式文件系统,用来存储海量数据。

2.MapReduce:并行处理框架,实现任务分解和调度。

Hadoop能做什么

Hadoop能完成大数据的存储,处理,分析,统计等业务,在数据挖掘等方面应用广泛。

Hadoop的优势

1.高扩展性。简单的增加硬件就可以达到效果的提高。

2.低成本,用PC机就能做到。

3.Hadoop具有成熟的生态圈,比如Hive,Hbase,zookeeper等,让Hadoop用起来更方便。

说了这么多,我们还没了解Hadoop的机制。

我们首先就需要了解Hadoop的两个核心组成:HDFS和MapReduce。

HDFS是什么呢?

前面说过,HDFS是一个分布式文件系统,用来存储和读取数据的。

文件系统都有最小处理单元,而HDFS的处理单元是块。HDFS保存的文件被分成块进行存储,默认的块大小是64MB。

并且在HDFS中有两类节点:

1.NameNode和DataNode。

NameNode:

NameNode是管理节点,存放文件元数据。也就是存放着文件和数据块的映射表,数据块和数据节点的映射表。

也就是说,通过NameNode,我们就可以找到文件存放的地方,找到存放的数据。

DataNode:

DataNode是工作节点,用来存放数据块,也就是文件实际存储的地方。

这么说有点抽象,让我们来看图:

客户端向NameNode发起读取元数据的消息,NameNode就会查询它的Block Map,找到对应的数据节点。然后客户端就可以去对应的数据节点中找到数据块,拼接成文件就可以了。这就是读写的流程。

作为分布式应用,为了达到软件的可靠性,如图上所示,每个数据块都有三个副本,并且分布在两个机架上。

这样一来,如果某个数据块坏了,能够从别的数据块中读取,而当如果一个机架都坏了,还可以从另一个机架上读取,从而实现高可靠。

我们从上图还可以看到,因为数据块具有多个副本,NameNode要知道那些节点是存活的吧,他们之间的联系是依靠心跳检测来实现的。这也是很多分布式应用使用的方法了。

我们还可以看到,NameNode也有一个Secondary NameNode,万一NameNode出故障了,Secondary就会成替补,保证了软件的可靠性。

HDFS具有什么特点呢?

1.数据冗余,软件容错很高。

2.流失数据访问,也就是HDFS一次写入,多次读写,并且没办法进行修改,只能删除之后重新创建

3.适合存储大文件。如果是小文件,而且是很多小文件,连一个块都装不满,并且还需要很多块,就会极大浪费空间。

HDFS的适用性和局限性:

1.数据批量读写,吞吐量高。

2.不适合交互式应用,延迟较高。

3.适合一次写入多次读取,顺序读取。

4.不支持多用户并发读写文件。

了解完了HDFS,就轮到MapReduce了。

MapReduce是什么:

MapReduce是并行处理框架,实现任务分解和调度。

其实原理说通俗一点就是分而治之的思想,将一个大任务分解成多个小任务(map),小任务执行完了之后,合并计算结果(reduce)。

也就是说,JobTracker拿到job之后,会把job分成很多个maptask和reducetask,交给他们执行。 MapTask、ReduceTask函数的输入、输出都是<key,value>的形式。HDFS存储的输入数据经过解析后,以键值对的形式,输入到MapReduce()函数中进行处理,输出一系列键值对作为中间结果,在Reduce阶段,对拥有同样Key值的中间数据进行合并形成最后结果。

首先我们需要先知道几个小概念:

1.job  2.task  3.jobTracker  4.taskTracker

job:在Hadoop内部,用Job来表示运行的MapReduce程序所需要用到的所有jar文件和类的集合,>这些文件最终都被整合到一个jar文件中,将此jar文件提交给JobTraker,MapReduce程序就会执行。

task:job会分成多个task。分为MapTask和ReduceTask。

jobTracker:管理节点。将job分解为多个map任务和reduce任务。

作用:
1.作业调度
2.分配任务,监控任务执行进度
3.监控TaskTracker状态

taskTracker:任务节点。一般和dataNode为同一个节点,这样计算可以跟着数据走,开销最小化。

作用:

1.执行任务

2.汇报任务状态

在MapReduce中,也有容错机制。

1.重复执行。一个job最多被执行4次。

2.推测执行。因为Map全部算完之后才会执行Reduce,如果其中一个Map很慢,就会多开一个task来完成同样的工作,哪个执行的快用哪个。

这样,我们就大致了解了Hadoop其中的原理,主要了解HDFS文件系统的存储过程和MapReduce的作业调度分配过程。

长按识别关注我们,每天都有精彩内容分享哦!~

 

Hadoop大数据平台入门——HDFS和MapReduce的更多相关文章

  1. hadoop大数据平台安全基础知识入门

    概述 以 Hortonworks Data Platform (HDP) 平台为例 ,hadoop大数据平台的安全机制包括以下两个方面: 身份认证 即核实一个使用者的真实身份,一个使用者来使用大数据引 ...

  2. 【HADOOP】| 环境搭建:从零开始搭建hadoop大数据平台(单机/伪分布式)-下

    因篇幅过长,故分为两节,上节主要说明hadoop运行环境和必须的基础软件,包括VMware虚拟机软件的说明安装.Xmanager5管理软件以及CentOS操作系统的安装和基本网络配置.具体请参看: [ ...

  3. 数据仓库和Hadoop大数据平台有什么差别?

    广义上来说,Hadoop大数据平台也可以看做是新一代的数据仓库系统, 它也具有很多现代数据仓库的特征,也被企业所广泛使用.因为MPP架构的可扩展性,基于MPP的数据仓库系统有时候也被划分到大数据平台类 ...

  4. 单机,伪分布式,完全分布式-----搭建Hadoop大数据平台

    Hadoop大数据——随着计算机技术的发展,互联网的普及,信息的积累已经到了一个非常庞大的地步,信息的增长也在不断的加快.信息更是爆炸性增长,收集,检索,统计这些信息越发困难,必须使用新的技术来解决这 ...

  5. Hadoop大数据初入门----haddop伪分布式安装

    一.hadoop解决了什么问题 hdfs 解决了海量数据的分布式存储,高可靠,易扩展,高吞吐量mapreduce 解决了海量数据的分析处理,通用性强,易开发,健壮性 yarn 解决了资源管理调度 二. ...

  6. Hadoop大数据平台构建

    基础:linux常用命令.Java编程基础大数据:科学数据.金融数据.物联网数据.交通数据.社交网络数据.零售数据等等. Hadoop: 一个开源的分布式存储.分布式计算平台.(基于Apache) H ...

  7. [Hadoop大数据]--kafka入门

    问题导读: 1.zookeeper在kafka的作用是什么? 2.kafka中几乎不允许对消息进行“随机读写”的原因是什么? 3.kafka集群consumer和producer状态信息是如何保存的? ...

  8. Hadoop大数据平台节点的动态增删

    环境:CentOS 7.4 (1708  DVD) 工具:MobaXterm 一. 节点的动态增加 1. 为新增加的节点(主机)配置免密码登录.使用ssh-keygen和ssh-copy-id命令(详 ...

  9. Hadoop大数据平台搭建之前期配置(2)

    环境:CentOS 7.4 (1708  DVD) 工具:VMware.MobaXterm 一. 克隆大数据集群 1. 选中已经进行了基本配置的虚拟机,进行克隆. 2. 此处改为"创建完整克 ...

随机推荐

  1. Git客户端TortoiseGit下载、安装及汉化

    本篇经验将和大家介绍Git客户端TortoiseGit下载.安装及汉化的方法,希望对大家的工作和学习有所帮助! TortoiseGit下载和安装   1 TortoiseGit是Windows下最好用 ...

  2. 黑马vue---13、事件修饰符的介绍

    黑马vue---13.事件修饰符的介绍 一.总结 一句话总结: .stop 阻止冒泡:input type="button" value="戳他" @click ...

  3. Python学习笔记—函数

    函数 我们知道圆的面积计算公式为: S = πr2 当我们知道半径r的值时,就可以根据公式计算出面积.假设我们需要计算3个不同大小的圆的面积: r1 = 12.34 r2 = 9.08 r3 = 73 ...

  4. oracle设置默认值无效

    一次做农行的项目,在向一个表插入数据时我们要求插入字符类型的操作日期和时间,我们这边当时采取的是给日期和时间字段设置默认值的方法:下面我简单还原一下当时的表结构 -- Create table cre ...

  5. [go]beego获取参数/返回参数

    获取前端传来的参数 获取数据并转为对应的类型 - ?id=111&id=122 c.GetInt("id") int,111 - ?id=111&id=122 c. ...

  6. 用Python在Android手机上架FTP服务器

    当我们没有带数据线却将手机上的文件共享到电脑上时,架个简单的FTP服务器 可以帮我们快速解决问题.以共享手机里的照片为例: 首先将电脑.手机接入同一个wifi. 然后,手机上用QPython执行以下脚 ...

  7. tensorflow读取图片案例

    1.知识点 """ 1.图片读取流程与API: 1.构造图片文件队列 文件队列API: a)tf.train.string_input_producer(string_t ...

  8. linux性能监控 + Sendmail 发邮件

    sendmail安装 #!/bin/bash#控制发邮件的阈值是在rate,rate1和FF值(三个同样的用途,仅仅是名字不同)##注:该博文中的变量不规范,我是随意定义的,请注意##定义时间倒计时函 ...

  9. postman提交数组格式方式

    提交数组格式数据,对应的服务器端接收的是@RequestBody 和对应的接收值

  10. Windows下查找文件或文件夹被哪个进程占用

    Linux下我们可以使用lsof +D /filepath/,查看到文件被那些进程占用. windows下也会经常遇到文件夹或文件无法删除或无法访问的问题,使用“资源监视器”可以找到占用的进程,可以尝 ...