Get The Treasury

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=3642

Problem Description

Jack knows that there is a great underground treasury in a secret region. And he has a special device that can be used to detect treasury under the surface of the earth. One day he got outside with the device to ascertain the treasury. He chose many different locations on the surface of the earth near the secret region. And at each spot he used the device to detect treasury and got some data from it representing a region, which may contain treasury below the surface. The data from the device at each spot is six integers x1, y1, z1, x2, y2 and z2 (x1<x2, y1<y2, z1<z2). According to the instruction of the device they represent the range of x, y and z coordinates of the region. That is to say, the x coordinate of the region, which may contain treasury, ranges from x1 to x2. So do y and z coordinates. The origin of the coordinates is a fixed point under the ground.

Jack can’t get the total volume of the treasury because these regions don’t always contain treasury. Through years of experience, he discovers that if a region is detected that may have treasury at more than two different spots, the region really exist treasure. And now Jack only wants to know the minimum volume of the treasury.

Now Jack entrusts the problem to you.

Input

The first line of the input file contains a single integer t, the number of test cases, followed by the input data for each test case.

Each test case is given in some lines. In the first line there is an integer n (1 ≤ n ≤ 1000), the number of spots on the surface of the earth that he had detected. Then n lines follow, every line contains six integers x1, y1, z1, x2, y2 and z2, separated by a space. The absolute value of x and y coordinates of the vertices is no more than 106, and that of z coordinate is no more than 500.

Output

For each test case, you should output “Case a: b” in a single line. a is the case number, and b is the minimum volume of treasury. The case number is counted from one.

Sample Input

    2
1
0 0 0 5 6 4
3
0 0 0 5 5 5
3 3 3 9 10 11
3 3 3 13 20 45

Sample Output

    Case 1: 0
Case 2: 8

题意

给你一些立方体,求相交三次或以上的体积和。

题解

昨天做了个求面积交两次或以上的,今天升级了,交三次其实还好,和交两次超不多,但是球体积我就有点懵了,想了好久,不知道咋办。

最终看题解,结果。。。感觉这不是暴力吗?多出来的一维z,先把z排序,然后每次把包含z[i]到z[i+1]的立方体加入到一个零食队列中,求这些立方体的面积并,在乘上(z[i+1]-z[i])。

既然这样可以过,那其实和二维没什么差别了,无非就是代码多了一些,都是套路啊!

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 1050
ll kthx[N<<1],kthz[N<<1];
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
struct Query
{
ll l,r,z1,z2,h; int id;
bool operator<(const Query&e)const
{return h<e.h;}
}que[N<<1],tmp[N<<1];
struct Node{int l,r,lazy;ll sum,sum2,sum3;};
struct segmentTree
{
Node tr[N<<3];
void push_up(int x);
void bt(int x,int l,int r);
void update(int x,int l,int r,int tt);
}seg;
void segmentTree::push_up(int x)
{
ll len=kthx[tr[x].r+1]-kthx[tr[x].l];
tr[x].sum=0;
if (tr[x].l<tr[x].r)tr[x].sum=tr[x<<1].sum+tr[x<<1|1].sum;
if (tr[x].lazy>=1)tr[x].sum=len;
tr[x].sum2=0;
if (tr[x].lazy>=2)tr[x].sum2=len;
if (tr[x].l<tr[x].r&&tr[x].lazy==1)tr[x].sum2=tr[x<<1].sum+tr[x<<1|1].sum;
if (tr[x].l<tr[x].r&&tr[x].lazy==0)tr[x].sum2=tr[x<<1].sum2+tr[x<<1|1].sum2;
tr[x].sum3=0;
if (tr[x].lazy>=3)tr[x].sum3=len;
if (tr[x].l==tr[x].r)return;
if (tr[x].lazy==2)tr[x].sum3=tr[x<<1].sum+tr[x<<1|1].sum;
if (tr[x].lazy==1)tr[x].sum3=tr[x<<1].sum2+tr[x<<1|1].sum2;
if (tr[x].lazy==0)tr[x].sum3=tr[x<<1].sum3+tr[x<<1|1].sum3;
}
void segmentTree::bt(int x,int l,int r)
{
tr[x]=Node{l,r,0,0,0,0};
if(l==r)return;
int mid=(l+r)>>1;
bt(x<<1,l,mid);
bt(x<<1|1,mid+1,r);
}
void segmentTree::update(int x,int l,int r,int tt)
{
if (l<=tr[x].l&&tr[x].r<=r)
{
tr[x].lazy+=tt;
push_up(x);
return;
}
int mid=(tr[x].l+tr[x].r)>>1;
if(l<=mid)update(x<<1,l,r,tt);
if(mid<r)update(x<<1|1,l,r,tt);
push_up(x);
}
void work()
{
int m,numx=0,numz=0;
ll ans=0;
read(m);
for(int i=1;i<=m;i++)
{
ll x1,y1,z1,x2,y2,z2;
//scanf("%lld%lld%lld%lld%lld%lld",&x1,&y1,&z1,&x2,&y2,&z2);
read(x1); read(y1); read(z1); read(x2); read(y2); read(z2);
que[i]={x1,x2,z1,z2,y1,1};
que[i+m]={x1,x2,z1,z2,y2,-1};
kthx[++numx]=x1;
kthx[++numx]=x2;
kthz[++numz]=z1;
kthz[++numz]=z2;
}
sort(que+1,que+numx+1);
sort(kthx+1,kthx+numx+1);
sort(kthz+1,kthz+numz+1);
numx=unique(kthx+1,kthx+numx+1)-kthx-1;
numz=unique(kthz+1,kthz+numz+1)-kthz-1;
for(int i=1;i<=2*m;i++)
{
que[i].l=lower_bound(kthx+1,kthx+numx+1,que[i].l)-kthx;
que[i].r=lower_bound(kthx+1,kthx+numx+1,que[i].r)-kthx-1;
}
seg.bt(1,1,numx);
for(int j=1;j<=numz-1;j++)
{
ll z1=kthz[j],z2=kthz[j+1],tp=0,now=0;
for(int i=1;i<=2*m;i++)
if (que[i].z1<=z1&&z2<=que[i].z2)tmp[++now]=que[i];
for(int i=1;i<=now;i++)
{
seg.update(1,tmp[i].l,tmp[i].r,tmp[i].id);
tp+=seg.tr[1].sum3*(tmp[i+1].h-tmp[i].h);
}
ans+=1LL*tp*(z2-z1);
}
static int cas;
printf("Case %d: %lld\n",++cas,ans);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int T;
read(T);
while(T--)work();
}

HDU 3642 求体积交集的更多相关文章

  1. hdu 3642 Get The Treasury(扫描线)

    pid=3642" style="">题目链接:hdu 3642 Get The Treasury 题目大意:三维坐标系,给定若干的长方体,问说有多少位置被覆盖3次 ...

  2. HDU 3642 Get The Treasury (线段树扫描线,求体积并)

    参考链接 : http://blog.csdn.net/zxy_snow/article/details/6870127 题意:给你n个立方体,求覆盖三次以上(包括三次)的区域的体积 思路:先将z坐标 ...

  3. Q - Get The Treasury - HDU 3642 (扫面线求体积)

    题意:求被三个或三个以上立方体重合的体积 分析:就是平面面积的加强,不过归根还是一样的,可以把z轴按照从小向大分区间N个,然后可以得到N个平面,用平面重复三次以上的在和高度计算体积. ******** ...

  4. HDU - 3642 Get The Treasury(线段树求体积交)

    https://cn.vjudge.net/problem/HDU-3642 题意 求立方体相交至少3次的体积. 分析 三维的呢..首先解决至少覆盖三次的问题.则用三个标记,更新时的细节要注意. 注意 ...

  5. hdu 3642 Get The Treasury

    Get The Treasury http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Othe ...

  6. HDU 3642 - Get The Treasury - [加强版扫描线+线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  7. Get The Treasury HDU - 3642(扫描线求三维面积交。。体积交)

    题意: ...就是求体积交... 解析: 把每一层z抽出来,计算面积交, 然后加起来即可..! 去看一下 二维面积交的代码 再看看这个三维面积交的代码.. down函数里 你发现了什么规律!!! 参考 ...

  8. hdu 3642 覆盖3次以上体积

    http://www.cnblogs.com/kane0526/archive/2013/03/06/2947118.html 题目大意:给你n个立方体,求相交区域大于等于三次的体积和. 这题需要前面 ...

  9. HDU 3642 Get The Treasury (线段树扫描线)

    题意:给你一些长方体,问你覆盖三次及以上的体积有多大 首先我们观察x轴y轴一样很大,但是z轴很小,所以我们可以枚举z轴(-500,500),注意我们枚举的是每一段长度为一的z轴的xy轴的面积而不是点. ...

随机推荐

  1. Applications (ZOJ 3705)

    题解:就是题目有点小长而已,可能会不想读题,但是题意蛮好理解的,就是根据条件模拟,计算pts.(送给队友zm. qsh,你们不适合训练了.) #include <iostream> #in ...

  2. codeforces392B

    CF392B Tower of Hanoi 题意翻译 河内塔是一个众所周知的数学难题.它由三根杆和一些可以滑动到任何杆上的不同尺寸的圆盘组成.难题从一个整齐的杆中开始,按照尺寸从小到大的顺序排列,最小 ...

  3. sqlserver 存储过程的新建与执行

    if Exists(select * from sysobjects where NAME = 'insert_custominfo' and type='P') drop procedure ins ...

  4. C# 窗体 类似framest 左侧点击右侧显示 左侧菜单右侧显示

    首先托一个splitContainer调节大小位置 然后进行再新创建一个窗体名为add 在左侧拖入button按钮 进入代码阶段 更改属性 public Main() { InitializeComp ...

  5. Ubuntu18.04 桌面系统的个人吐槽(主要是终端)

    装了Ubuntu18.04,桌面换风格了,使用中最大的感觉是终端切换非常反人类,可能是我还没有摸清门路.原先习惯用Alt+Tab快捷键切不同终端以及不同窗口的,现在Alt+Tab时多个终端会归成一个图 ...

  6. chrome console控制台引入jquery库

    var jqueryJs=document.createElement('script');jqueryJs.setAttribute("type","text/Java ...

  7. 分享一个自己做的SpringMVC的PPT,由于比较忙只写了一些重要的部分

  8. Java同步数据结构之LinkedBlockingQueue

    前言 比起ArrayBlockingQueue,LinkedBlockingQueue应该是最被大家常用的阻塞队列,LinkedBlockingQueue是基于链表的一种可选容量的阻塞队列,也就是说, ...

  9. hadoop查看文件大小

    hadoop fs -du /yj/input/ 列出input下所有文件的大小,以B为单位 #!/bin/sh #echo "hadoop fs -du /" hadoop fs ...

  10. python封装和解构

    封装 将多个值使用逗号分割,组合在一起 本质上,返回一个元组,只是省略了小括号 python的特有的语法,被很多语言学习借鉴 t1 = (1,2) #定义元组 t2 = 1,2 #将1和2封装成元组 ...