1、A Coarse-to-Fine Subpixel Registration Method to Recover Local Perspective Deformation in the Application of Image Super-Resolution,2012

2、Deep Color Guided Coarse-to-Fine Convolutional Network Cascade for Depth Image Super-Resolution,2018

深度图像超分辨率是一项重要而又具有挑战性的任务。为了解决这一问题,本文提出了一种新的深彩色引导粗精细卷积神经网络(Cnn)框架。首先,我们提出了一种数据驱动滤波方法来逼近深度图像超分辨率的理想滤波器,而不是手工设计的滤波器。在大样本的基础上,对上采样深度图像进行滤波,具有更高的准确性和稳定性。其次,我们引入了一个粗到细的cnn来学习不同尺寸的滤芯.在粗化阶段,cnn学习更大的滤波核,以获得粗糙的高分辨率深度图像。对于精细级,采用粗高分辨深度图像作为输入,学习更小的滤波核,得到更精确的结果。从这个网络中受益,我们可以逐步恢复高频细节。第三,构造了一种融合色差和空间距离的深度图像重采样彩色制导策略。根据高分辨率彩色地图中对应的像素对插值后的高分辨率深度图像进行修正.在颜色信息的引导下,获得的高分辨率图像的深度可以减轻纹理的影响。

3、Coarse-to-Fine Learning for Single-Image Super-Resolution,2017

4、Coarse-to-Fine Image Super-Resolution Using Convolutional Neural Networks,2018

5、Single Image Super-Resolution for MRI Using a Coarse-to-Fine Network

SRCFN

6、(不太相关)SRM超分辨率测绘技术

super-resolution mapping (SRM) techniques

Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution,2012

新的超分辨率映射使用时间图像融合、半色调、2D多陷波滤波器和迭代形态学的组合来表示来自粗空间分辨率图像的湖泊。对所代表的湖泊的形状特征进行了评价。这种技术对湖泊的形状产生了高精度和现实的表征。

Coarse-to-Fine超分辨率相关的更多相关文章

  1. Adobe超分辨率算法:SRNTT

    论文:Image Super-Resolution by Neural Texture Transfer 论文链接:https://arxiv.org/abs/1903.00834 项目地址:http ...

  2. 超分辨率论文CVPR-Kai Zhang

    深度学习与传统方法结合的超分辨率:Kai Zhang 1. (CVPR, 2019) Deep Plug-and-Play Super-Resolution for Arbitrary https:/ ...

  3. 腾讯QQ空间超分辨率技术TSR

    腾讯QQ空间超分辨率技术TSR:为用户节省3/4流量,处理效果和速度超谷歌RAISR 雷锋网AI科技评论: 随着移动端屏幕分辨率越来越高,甚至像iPhone更有所谓的“视网膜屏”,人们对高清图片的诉求 ...

  4. 基于稀疏表示的图像超分辨率《Image Super-Resolution Via Sparse Representation》

    由于最近正在做图像超分辨重建方面的研究,有幸看到了杨建超老师和马毅老师等大牛于2010年发表的一篇关于图像超分辨率的经典论文<ImageSuper-Resolution Via Sparse R ...

  5. JPEG压缩图像超分辨率重建算法

    压缩图像超分辨率重建算法学习 超分辨率重建是由一幅或多幅的低分辨率图像重构高分辨率图像,如由4幅1m分辨率的遥感图像重构分辨率0.25m分辨率图像.在军用/民用上都有非常大应用. 眼下的超分辨率重建方 ...

  6. 使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning

    使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸 ...

  7. 【超分辨率】- CVPR2019中SR论文导读与剖析

    CVPR2019超分领域出现多篇更接近于真实世界原理的低分辨率和高分辨率图像对应的新思路.具体来说,以前论文训练数据主要使用的是人为的bicubic下采样得到的,网络倾向于学习bicubic下采样的逆 ...

  8. 【超分辨率】—图像超分辨率(Super-Resolution)技术研究

    一.相关概念 1.分辨率 图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸.一般情况下,图像分辨率越高,图像中包 ...

  9. 图像超分辨率算法:CVPR2020

    图像超分辨率算法:CVPR2020 Unpaired Image Super-Resolution using Pseudo-Supervision 论文地址: http://openaccess.t ...

随机推荐

  1. python 解析Hdfs上的数据文件

    python想直接读取hadoop上的文件内容,一番操作,头发掉了几根,也没能解析出来parquet文件类型的文件. 本博文简单讲解一下TEXTFILE文件格式的解析: 需要安装模块hdfs from ...

  2. flask 中的ORM ( 二 )

    1 关系映射 1 多对多 1 什么是多对多 A表中的一条数据可以与B表中任意多条数据相关联 B表中的一条数据可以与A表中任意多条数据相关联 2 实现 在数据库中使用第三张表(关联表) 在编程语言中,可 ...

  3. golang使用sftp连接服务器远程上传、下载文件

    安装github.com/pkg/sftp 我们之前介绍了,golang如何通过ssh连接服务器执行命令,下面我们来如何上传文件,上传文件同样需要之前的ssh,但是除此之外还需要一个模块,直接使用go ...

  4. gdb无法单步调试

    使用gdb调试单步程序时如果打印提示“single stepping until exit from function xxx,which has no line number information ...

  5. SVN将项目代码加入svn版本控制

    将已有项目代码加入svn版本控制 - TortoiseSVN入门篇Windows下SVN实用教程(以TortoiseSVN作为客户端(client)) 翻译: Bravo Young Next: 版本 ...

  6. jmeter——http、jdbc、soap请求

    1.jmeter——http 请求 1.1添加线程组 1.2添加http请求 1.3发起http请求 1.协议:通常一个http请求都会有相对应的协议,如HTTP,HTTPS等.这里除非有特殊要求,一 ...

  7. spring实例化一:InstantiationStrategy

          DefaultListableBeanFactory对bean的管理工厂,包括bean的生成,从class到bean的实例化.spring特为这个实例化过程,定义了接口Instantiat ...

  8. 大数据之路week05--day01(JDBC 初识之实现一个系统 实现用户选择增删改查 未优化版本)

    要求,实现用户选择增删改查. 给出mysql文件,朋友们可以自己运行导入到自己的数据库中: /* Navicat MySQL Data Transfer Source Server : mysql S ...

  9. elk with docker-compose

    version: '2' services: elasticsearch: image: docker.calix.local:18080/docker-elasticsearch:6.2.2-1 # ...

  10. Web service stop after running serveral hours

    Error Message: 1. Error:Web service call "Test" execution failed 2. Error:<CENTER>&l ...