1、A Coarse-to-Fine Subpixel Registration Method to Recover Local Perspective Deformation in the Application of Image Super-Resolution,2012

2、Deep Color Guided Coarse-to-Fine Convolutional Network Cascade for Depth Image Super-Resolution,2018

深度图像超分辨率是一项重要而又具有挑战性的任务。为了解决这一问题,本文提出了一种新的深彩色引导粗精细卷积神经网络(Cnn)框架。首先,我们提出了一种数据驱动滤波方法来逼近深度图像超分辨率的理想滤波器,而不是手工设计的滤波器。在大样本的基础上,对上采样深度图像进行滤波,具有更高的准确性和稳定性。其次,我们引入了一个粗到细的cnn来学习不同尺寸的滤芯.在粗化阶段,cnn学习更大的滤波核,以获得粗糙的高分辨率深度图像。对于精细级,采用粗高分辨深度图像作为输入,学习更小的滤波核,得到更精确的结果。从这个网络中受益,我们可以逐步恢复高频细节。第三,构造了一种融合色差和空间距离的深度图像重采样彩色制导策略。根据高分辨率彩色地图中对应的像素对插值后的高分辨率深度图像进行修正.在颜色信息的引导下,获得的高分辨率图像的深度可以减轻纹理的影响。

3、Coarse-to-Fine Learning for Single-Image Super-Resolution,2017

4、Coarse-to-Fine Image Super-Resolution Using Convolutional Neural Networks,2018

5、Single Image Super-Resolution for MRI Using a Coarse-to-Fine Network

SRCFN

6、(不太相关)SRM超分辨率测绘技术

super-resolution mapping (SRM) techniques

Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution,2012

新的超分辨率映射使用时间图像融合、半色调、2D多陷波滤波器和迭代形态学的组合来表示来自粗空间分辨率图像的湖泊。对所代表的湖泊的形状特征进行了评价。这种技术对湖泊的形状产生了高精度和现实的表征。

Coarse-to-Fine超分辨率相关的更多相关文章

  1. Adobe超分辨率算法:SRNTT

    论文:Image Super-Resolution by Neural Texture Transfer 论文链接:https://arxiv.org/abs/1903.00834 项目地址:http ...

  2. 超分辨率论文CVPR-Kai Zhang

    深度学习与传统方法结合的超分辨率:Kai Zhang 1. (CVPR, 2019) Deep Plug-and-Play Super-Resolution for Arbitrary https:/ ...

  3. 腾讯QQ空间超分辨率技术TSR

    腾讯QQ空间超分辨率技术TSR:为用户节省3/4流量,处理效果和速度超谷歌RAISR 雷锋网AI科技评论: 随着移动端屏幕分辨率越来越高,甚至像iPhone更有所谓的“视网膜屏”,人们对高清图片的诉求 ...

  4. 基于稀疏表示的图像超分辨率《Image Super-Resolution Via Sparse Representation》

    由于最近正在做图像超分辨重建方面的研究,有幸看到了杨建超老师和马毅老师等大牛于2010年发表的一篇关于图像超分辨率的经典论文<ImageSuper-Resolution Via Sparse R ...

  5. JPEG压缩图像超分辨率重建算法

    压缩图像超分辨率重建算法学习 超分辨率重建是由一幅或多幅的低分辨率图像重构高分辨率图像,如由4幅1m分辨率的遥感图像重构分辨率0.25m分辨率图像.在军用/民用上都有非常大应用. 眼下的超分辨率重建方 ...

  6. 使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning

    使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸 ...

  7. 【超分辨率】- CVPR2019中SR论文导读与剖析

    CVPR2019超分领域出现多篇更接近于真实世界原理的低分辨率和高分辨率图像对应的新思路.具体来说,以前论文训练数据主要使用的是人为的bicubic下采样得到的,网络倾向于学习bicubic下采样的逆 ...

  8. 【超分辨率】—图像超分辨率(Super-Resolution)技术研究

    一.相关概念 1.分辨率 图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸.一般情况下,图像分辨率越高,图像中包 ...

  9. 图像超分辨率算法:CVPR2020

    图像超分辨率算法:CVPR2020 Unpaired Image Super-Resolution using Pseudo-Supervision 论文地址: http://openaccess.t ...

随机推荐

  1. 在浏览器输入 URL 回车之后发生了什么

    注意:本文的步骤是建立在,请求的是一个简单的 HTTP 请求,没有 HTTPS.HTTP2.最简单的 DNS.没有代理.并且服务器没有任何问题的基础上. 大致流程 URL 解析 DNS 查询 TCP ...

  2. 【Hibernate】抓取策略

    一.区分延迟和立即检索 二.类级别检索和关联级别检索 一.区分延迟和立即检索 立即检索: 当执行某行代码的时候,马上发出SQL语句进行查询. get() 延迟检索: 当执行某行代码的时候,不会马上发出 ...

  3. 前阿里P8架构师谈如何设计优秀的API

    随着大数据.公共平台等互联网技术的日益成熟,API接口的重要性日益凸显,从公司的角度来看,API可以算作是公司一笔巨大的资产,公共API可以捕获用户.为公司做出许多贡献.对于个人来说,只要你编程,你就 ...

  4. jquery中prop,attr,data的区别

    这两天翻了jq的源码,今天看到了jq关于数据存储的几个方法,遂总结一下,和小伙伴没分享一下,哪里说的不对,还望批评指正~~~ 废话不多说,直接上代码: $(function(){ $('#div1') ...

  5. 个人作业-Alpha项目测试—luomei1547

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1/ 这个作业要求在哪里 https://edu.cnbl ...

  6. 从c到c++<一>

    逻辑型也称布尔型,其取值为true(逻辑真)和false(逻辑假),存储字节数在不同编译系统中可能有所不同,VC++中为1个字节. 声明方式: bool result; result=true; 可以 ...

  7. 关键字final 修饰类、方法、属性、参数类型

    笔记: /** 关键字final(最终的) 标记的类不能被继承, 提高安全性,提高程序的可读性 * 1.final 修饰类,这个类就不能被继承: 如:String类.StringBuffer类.Sys ...

  8. redis事务机制

    目录 一.事务的实现 1.multi——开启事务 2.命令入队列 3.exec——执行事务 4.DISCARD——放弃执行 5.错误处理 二.watch命令 redis官方文档:Redis trans ...

  9. redis 订阅&发布(转载)

    https://segmentfault.com/a/1190000016898228?utm_source=coffeephp.com 方法一: redis_helper.py: 封装发布订阅方法 ...

  10. Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 1) 题解

    A. Toy Train 时间限制:2 seconds 内存限制:256 megabytes 题意 有编号111~n(n≤5000)n(n\le 5000)n(n≤5000)的车站顺时针呈环排列,有m ...