Warp

逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质。

Warps and Thread Blocks

warp是SM的基本执行单元。一个warp包含32个并行thread,这32个thread执行于SMIT模式。也就是说所有thread执行同一条指令,并且每个thread会使用各自的data执行该指令。

block可以是一维二维或者三维的,但是,从硬件角度看,所有的thread都被组织成一维,每个thread都有个唯一的ID(ID的计算可以在之前的博文查看)。

每个block的warp数量可以由下面的公式计算获得:

一个warp中的线程必然在同一个block中,如果block所含线程数目不是warp大小的整数倍,那么多出的那些thread所在的warp中,会剩余一些inactive的thread,也就是说,即使凑不够warp整数倍的thread,硬件也会为warp凑足,只不过那些thread是inactive状态,需要注意的是,即使这部分thread是inactive的,也会消耗SM资源。

Warp Divergence

控制流语句普遍存在于各种编程语言中,GPU支持传统的,C-style,显式控制流结构,例如if…else,for,while等等。

CPU有复杂的硬件设计可以很好的做分支预测,即预测应用程序会走哪个path。如果预测正确,那么CPU只会有很小的消耗。和CPU对比来说,GPU就没那么复杂的分支预测了(CPU和GPU这方面的差异的原因不是我们关心的,了解就好,我们关心的是由这差异引起的问题)。

这样我们的问题就来了,因为所有同一个warp中的thread必须执行相同的指令,那么如果这些线程在遇到控制流语句时,如果进入不同的分支,那么同一时刻除了正在执行的分之外,其余分支都被阻塞了,十分影响性能。这类问题就是warp divergence。

请注意,warp divergence问题只会发生在同一个warp中。

下图展示了warp divergence问题:

为了获得最好的性能,就需要避免同一个warp存在不同的执行路径。避免该问题的方法很多,比如这样一个情形,假设有两个分支,分支的决定条件是thread的唯一ID的奇偶性:

__global__ void mathKernel1(float *c) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
float a, b;
a = b = 0.0f;
if (tid % 2 == 0) {
a = 100.0f;
} else {
b = 200.0f;
}
c[tid] = a + b;
}

一种方法是,将条件改为以warp大小为步调,然后取奇偶,如下:

__global__ void mathKernel2(void) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
float a, b;
a = b = 0.0f;
if ((tid / warpSize) % 2 == 0) {
a = 100.0f;
} else {
b = 200.0f;
}
c[tid] = a + b;
}

代码:

int main(int argc, char **argv) {
// set up device
int dev = 0;
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
printf("%s using Device %d: %s\n", argv[0],dev, deviceProp.name);
// set up data size
int size = 64;
int blocksize = 64;
if(argc > 1) blocksize = atoi(argv[1]);
if(argc > 2) size = atoi(argv[2]);
printf("Data size %d ", size);
// set up execution configuration
dim3 block (blocksize,1);
dim3 grid ((size+block.x-1)/block.x,1);
printf("Execution Configure (block %d grid %d)\n",block.x, grid.x);
// allocate gpu memory
float *d_C;
size_t nBytes = size * sizeof(float);
cudaMalloc((float**)&d_C, nBytes);
// run a warmup kernel to remove overhead
size_t iStart,iElaps;
cudaDeviceSynchronize();
iStart = seconds();
warmingup<<<grid, block>>> (d_C);
cudaDeviceSynchronize();
iElaps = seconds() - iStart;
printf("warmup <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x, iElaps );
// run kernel 1
iStart = seconds();
mathKernel1<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds() - iStart;
printf("mathKernel1 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps );
// run kernel 3
iStart = seconds();
mathKernel2<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds () - iStart;
printf("mathKernel2 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps );
// run kernel 3
iStart = seconds ();
mathKernel3<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds () - iStart;
printf("mathKernel3 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps);
// run kernel 4
iStart = seconds ();
mathKernel4<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds () - iStart;
printf("mathKernel4 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps);
// free gpu memory and reset divece
cudaFree(d_C);
cudaDeviceReset();
return EXIT_SUCCESS;
}

编译运行:

$ nvcc -O3 -arch=sm_20 simpleDivergence.cu -o simpleDivergence
$./simpleDivergence

输出:

$ ./simpleDivergence using Device 0: Tesla M2070
Data size 64 Execution Configuration (block 64 grid 1)
Warmingup elapsed 0.000040 sec
mathKernel1 elapsed 0.000016 sec
mathKernel2 elapsed 0.000014 sec

我们也可以直接使用nvprof(之后会详细介绍)这个工具来度量性能:

$ nvprof --metrics branch_efficiency ./simpleDivergence

输出为:

Kernel: mathKernel1(void)
1 branch_efficiency Branch Efficiency 100.00% 100.00% 100.00%
Kernel: mathKernel2(void)
1 branch_efficiency Branch Efficiency 100.00% 100.00% 100.00%

Branch Efficiency的定义如下:

到这里你应该在奇怪为什么二者表现相同呢,实际上当我们的代码很简单,可以被预测时,CUDA的编译器会自动帮助优化我们的代码。稍微提一下GPU分支预测(理解的有点晕,不过了解下就好),这里,一个被称为预测变量的东西会被设置成1或者0,所有分支都会得到执行,但是只有预测值为1时,才会得到执行。当条件状态少于某一个阈值时,编译器会将一个分支指令替换为预测指令,因此,现在回到自动优化问题,一份较长的代码就会导致warp divergence了。

可以使用下面的命令强制编译器不优化(貌似不怎么管用):

$ nvcc -g -G -arch=sm_20 simpleDivergence.cu -o simpleDivergence

Resource Partitioning

一个warp的context包括以下三部分:

  1. Program counter
  2. Register
  3. Shared memory

再次重申,在同一个执行context中切换是没有消耗的,因为在整个warp的生命期内,SM处理的每个warp的执行context都是on-chip的。

每个SM有一个32位register集合放在register file中,还有固定数量的shared memory,这些资源都被thread瓜分了,由于资源是有限的,所以,如果thread比较多,那么每个thread占用资源就叫少,thread较少,占用资源就较多,这需要根据自己的要求作出一个平衡。

资源限制了驻留在SM中blcok的数量,不同的device,register和shared memory的数量也不同,就像之前介绍的Fermi和Kepler的差别。如果没有足够的资源,kernel的启动就会失败。

当一个block或得到足够的资源时,就成为active block。block中的warp就称为active warp。active warp又可以被分为下面三类:

  1. Selected warp
  2. Stalled warp
  3. Eligible warp

SM中warp调度器每个cycle会挑选active warp送去执行,一个被选中的warp称为selected warp,没被选中,但是已经做好准备被执行的称为Eligible warp,没准备好要执行的称为Stalled warp。warp适合执行需要满足下面两个条件:

  1. 32个CUDA core有空
  2. 所有当前指令的参数都准备就绪

例如,Kepler任何时刻的active warp数目必须少于或等于64个(GPU架构篇有介绍)。selected warp数目必须小于或等于4个(因为scheduler有4个?不确定,至于4个是不是太少则不用担心,kernel启动前,会有一个warmup操作,可以使用cudaFree()来实现)。如果一个warp阻塞了,调度器会挑选一个Eligible
warp准备去执行。

CUDA编程中应该重视对计算资源的分配:这些资源限制了active warp的数量。因此,我们必须掌握硬件的一些限制,为了最大化GPU利用率,我们必须最大化active warp的数目。

Latency Hiding

指令从开始到结束消耗的clock cycle称为指令的latency。当每个cycle都有eligible warp被调度时,计算资源就会得到充分利用,基于此,我们就可以将每个指令的latency隐藏于issue其它warp的指令的过程中。

和CPU编程相比,latency hiding对GPU非常重要。CPU cores被设计成可以最小化一到两个thread的latency,但是GPU的thread数目可不是一个两个那么简单。

当涉及到指令latency时,指令可以被区分为下面两种:

  1. Arithmetic instruction
  2. Memory instruction

顾名思义,Arithmetic  instruction latency是一个算数操作的始末间隔。另一个则是指load或store的始末间隔。二者的latency大约为:

  1. 10-20 cycle for arithmetic operations
  2. 400-800 cycles for global memory accesses

下图是一个简单的执行流程,当warp0阻塞时,执行其他的warp,当warp变为eligible时从新执行。

你可能想要知道怎样评估active warps 的数量来hide latency。Little’s Law可以提供一个合理的估计:

对于Arithmetic operations来说,并行性可以表达为用来hide  Arithmetic latency的操作的数目。下表显示了Fermi和Kepler相关数据,这里是以(a + b * c)作为操作的例子。不同的算数指令,throughput(吞吐)也是不同的。

这里的throughput定义为每个SM每个cycle的操作数目。由于每个warp执行同一种指令,因此每个warp对应32个操作。所以,对于Fermi来说,每个SM需要640/32=20个warp来保持计算资源的充分利用。这也就意味着,arithmetic operations的并行性可以表达为操作的数目或者warp的数目。二者的关系也对应了两种方式来增加并行性:

  1. Instruction-level Parallelism(ILP):同一个thread中更多的独立指令
  2. Thread-level Parallelism (TLP):更多并发的eligible threads

对于Memory operations,并行性可以表达为每个cycle的byte数目。

因为memory throughput总是以GB/Sec为单位,我们需要先作相应的转化。可以通过下面的指令来查看device的memory frequency:

$ nvidia-smi -a -q -d CLOCK | fgrep -A 3 "Max Clocks" | fgrep "Memory"

以Fermi为例,其memory frequency可能是1.566GHz,Kepler的是1.6GHz。那么转化过程为:

乘上这个92可以得到上图中的74,这里的数字是针对整个device的,而不是每个SM。

有了这些数据,我们可以做一些计算了,以Fermi为例,假设每个thread的任务是将一个float(4 bytes)类型的数据从global memory移至SM用来计算,你应该需要大约18500个thread,也就是579个warp来隐藏所有的memory latency。

Fermi有16个SM,所以每个SM需要579/16=36个warp来隐藏memory latency。

Occupancy

当一个warp阻塞了,SM会执行另一个eligible warp。理想情况是,每时每刻到保证cores被占用。Occupancy就是每个SM的active warp占最大warp数目的比例:

我们可以使用的device篇提到的方法来获取warp最大数目:

cudaError_t cudaGetDeviceProperties(struct cudaDeviceProp *prop, int device);

然后用maxThreadsPerMultiProcessor来获取具体数值。

grid和block的配置准则:

  • 保证block中thrad数目是32的倍数。
  • 避免block太小:每个blcok最少128或256个thread。
  • 根据kernel需要的资源调整block。
  • 保证block的数目远大于SM的数目。
  • 多做实验来挖掘出最好的配置。

Occupancy专注于每个SM中可以并行的thread或者warp的数目。不管怎样,Occupancy不是唯一的性能指标,Occupancy达到当某个值是,再做优化就可能不在有效果了,还有许多其它的指标需要调节,我们会在之后的博文继续探讨。

Synchronize

同步是并行编程的一个普遍的问题。在CUDA的世界里,有两种方式实现同步:

  1. System-level:等待所有host和device的工作完成
  2. Block-level:等待device中block的所有thread执行到某个点

因为CUDA API和host代码是异步的,cudaDeviceSynchronize可以用来停住CUP等待CUDA中的操作完成:

cudaError_t cudaDeviceSynchronize(void);

因为block中的thread执行顺序不定,CUDA提供了一个function来同步block中的thread。

__device__ void __syncthreads(void);

当该函数被调用,block中的每个thread都会等待所有其他thread执行到某个点来实现同步。

【并行计算-CUDA开发】CUDA ---- Warp解析的更多相关文章

  1. CUDA开发 - CUDA 版本

    "CUDA runtime is insufficient with CUDA driver"CUDA 9.2: 396.xx CUDA 9.1: 387.xx CUDA 9.0: ...

  2. 【并行计算-CUDA开发】warp是调度和执行的基本单位而harf-warp为存储器操作基本单位

    1.在用vs运行cuda的一些例子时,在编译阶段会报出很多警告: warning C4819 ...... 解决这个警告的方法是打开出现warning的文件,Ctrl+A全选,然后在文件菜单:file ...

  3. 【并行计算-CUDA开发】CUDA线程、线程块、线程束、流多处理器、流处理器、网格概念的深入理解

    GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最 ...

  4. Windows平台CUDA开发之前的准备工作

    CUDA是NVIDIA的GPU开发工具,眼下在大规模并行计算领域有着广泛应用. windows平台上面的CUDA开发之前.最好去NVIDIA官网查看说明,然后下载对应的driver. ToolKits ...

  5. 【神经网络与深度学习】【CUDA开发】caffe-windows win32下的编译尝试

    [神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是 ...

  6. 【ARM-Linux开发】【CUDA开发】【深度学习与神经网络】Jetson Tx2安装相关之三

    JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件.JetPack 3.0包括对Jetson TX2 , Jetson TX1和J ...

  7. 【CUDA开发】CUDA面内存拷贝用法总结

    [CUDA开发]CUDA面内存拷贝用法总结 标签(空格分隔): [CUDA开发] 主要是在调试CUDA硬解码并用D3D9或者D3D11显示的时候遇到了一些代码,如下所示: CUdeviceptr g_ ...

  8. 【CUDA开发】CUDA编程接口(一)------一十八般武器

    子曰:工欲善其事,必先利其器.我们要把显卡作为通用并行处理器来做并行算法处理,就得知道CUDA给我提供了什么样的接口,就得了解CUDA作为通用高性能计算平台上的一十八般武器.(如果你想自己开发驱动,自 ...

  9. 【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明

    [神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分 ...

  10. 【视频开发】【CUDA开发】ffmpeg Nvidia硬件加速总结

    原文链接:https://developer.nvidia.com/ffmpeg GPU-accelerated video processing integrated into the most p ...

随机推荐

  1. windows下C语言头文件的运用

    头文件 singnext.dingswords printf("终止我每丝呼吸,让心灵穿透所有的秘密\n"); 头文件 singtocj.h printf("当无数的日月 ...

  2. 【python爬虫】 爬云音乐我和xxx共同听过的歌曲

    闲聊的时候,觉得,想写个爬虫,爬下2个人共同听过的歌曲有哪些,然后一鼓作气,花了一个多小时,写了一个.支持最近一周和所有时间,需要用户没有关闭听歌排行显示 How to start 使用到的工具是Se ...

  3. vue_03总结

    vue_03总结 1.组件: html.css.js的集合体 vue实例就代表组件 组件用template实例成员管理html结构,有且只有一个根标签 子组件可以复用,所以数据要组件化处理,data的 ...

  4. [Cypress] Use the Most Robust Selector for Cypress Tests

    Which selectors your choose for your tests matter, a lot. In this lesson, we'll see the recommended ...

  5. VUE:Select2

    <template> <div> <ul class="skill"> <li v-for='item of list' v-on:cli ...

  6. 无法识别的配置节点 applicationSettings/* Properties.Settings 解决方法

    http://blog.csdn.net/yaoxtao/article/details/7766888 在项目中引用web service时,偶然出现 无法识别的配置节点 applicationSe ...

  7. 小米oj 有多少个公差为2的等差数列

     有多少个公差为 2 的等差数列 序号:#31难度:有挑战时间限制:1000ms内存限制:10M 描述 给出一个正整数N(2<= N <=10000000),统计有多少公差为2的正整数等差 ...

  8. 线程的interrupt()

    官网解释 If this thread is blocked in an invocation of the wait(), wait(long), or wait(long, int) method ...

  9. java.util.Date和java.sql.Date的区别和相互转化 (转)

    java.util.Date和java.sql.Date的区别及应用   java.util.Date 就是在除了SQL语句的情况下面使用 java.sql.Date 是针对SQL语句使用的,它只包含 ...

  10. 获取当前页面的webview ID

    代码: A页面 <script type="text/javascript"> var ws = null; mui.plusReady(function(){ ws ...