C - Covered Points Count CodeForces - 1000C (差分,离散化,统计)
C - Covered Points Count
You are given nn segments on a coordinate line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.
Your task is the following: for every k∈[1..n]k∈[1..n], calculate the number of points with integer coordinates such that the number of segments that cover these points equals kk. A segment with endpoints lili and riri covers point xx if and only if li≤x≤rili≤x≤ri.
Input
The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of segments.
The next nn lines contain segments. The ii-th line contains a pair of integers li,rili,ri (0≤li≤ri≤10180≤li≤ri≤1018) — the endpoints of the ii-th segment.
Output
Print nn space separated integers cnt1,cnt2,…,cntncnt1,cnt2,…,cntn, where cnticnti is equal to the number of points such that the number of segments that cover these points equals to ii.
Examples
Input
30 31 33 8
Output
6 2 1
Input
31 32 45 7
Output
5 2 0
Note
The picture describing the first example:
Points with coordinates [0,4,5,6,7,8][0,4,5,6,7,8] are covered by one segment, points [1,2][1,2] are covered by two segments and point [3][3] is covered by three segments.
The picture describing the second example:
Points [1,4,5,6,7][1,4,5,6,7] are covered by one segment, points [2,3][2,3] are covered by two segments and there are no points covered by three segments.
题意:
给你n个线段
让你输出有多少个点被1~n个线段覆盖?
思路:
将线段拆成点,左端点权值为1,右端点权值为-1,离散化端点之后从左往右扫,过程中维护左端点和当前区间被多少个线段覆盖,统计答案就行了。
注意:
因为l~r线段中包括的点数是r-l+1,所以我们可以直接r++
map会根据firstkey 即ll排好序,所以可以直接for(auto : T)
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
ll l, r;
map<ll, ll> m;
ll ans[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n) {
cin >> l >> r;
r++;
m[l]++;
m[r]--;
}
ll cnt = 0ll;
l = 0ll;
for (auto x : m) {
ll len = x.fi - l;
ans[cnt] += len;
l = x.fi;
cnt += x.se;
}
repd(i, 1, n) {
cout << ans[i];
if (i != n) {
cout << " ";
} else {
cout << endl;
}
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
C - Covered Points Count CodeForces - 1000C (差分,离散化,统计)的更多相关文章
- Educational Codeforces Round 46 C - Covered Points Count
C - Covered Points Count emmm 好像是先离散化一下 注意 R需要+1 这样可以确定端点 emmm 扫描线?瞎搞一下? #include<bits/stdc++.h&g ...
- Covered Points Count(思维题)
C. Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input stan ...
- Covered Points Count CF1000C 思维 前缀和 贪心
Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- CodeForces 1000C Covered Points Count(区间线段覆盖问题,差分)
https://codeforces.com/problemset/problem/1000/C 题意: 有n个线段,覆盖[li,ri],最后依次输出覆盖层数为1~n的点的个数. 思路: 区间线段覆盖 ...
- codeforces 1000C - Covered Points Count 【差分】
题目:戳这里 题意:给出n个线段,问被1~n个线段覆盖的点分别有多少. 解题思路: 这题很容易想到排序后维护每个端点被覆盖的线段数,关键是端点值不好处理.比较好的做法是用差分的思想,把闭区间的线段改为 ...
- 【CF1000C】Covered Points Count(离散化+差分)
点此看题面 大致题意: 给出\(n\)条线段,分别求有多少点被覆盖\(1\)次.\(2\)次...\(n\)次. 正常的算法 好吧,这道题目确实有个很简单的贪心做法(只可惜我做的时候没有想到,结果想了 ...
- cf1000C Covered Points Count (差分+map)
考虑如果数字范围没有这么大的话,直接做一个差分数组就可以了 但现在变大了 所以要用一个map来维护 #include<bits/stdc++.h> #define pa pair<i ...
- Educational Codeforces Round 46 (Rated for Div. 2) C. Covered Points Count
Bryce1010模板 http://codeforces.com/problemset/problem/1000/C 题意:问你从[l,r]区间的被多少条线覆盖,列出所有答案. 思路:类似括号匹配的 ...
- EDU 50 E. Covered Points 利用克莱姆法则计算线段交点
E. Covered Points 利用克莱姆法则计算线段交点.n^2枚举,最后把个数开方,从ans中减去. ans加上每个线段的定点数, 定点数用gcs(△x , △y)+1计算. #include ...
随机推荐
- 三、使用VSCode配置简单的vue项目
由于最近要使用的项目框架为前后端分离的,采用的是vue.js+webAPI的形式进行开发的.因为之前我没有接触过vue.js,也只是通过视频文档做了一些简单的练习.今天技术主管说让大家熟悉下VSCod ...
- 我们可以从英特尔® SPMD 程序编译器中学到什么?
英特尔® SPMD 程序编译器俗称为“ISPC”,它流畅地展示了 CPU 多核 SIMD 语言.GPU 计算语言.数据并行 C++ 扩展和嵌入式应用或领域特定计算语言的重要未来发展方向.具体而言,本文 ...
- 使用批处理执行 sql cmd
当 sql脚本文件太大了, 就可以考虑用这个方式来执行 1.准备好要执行的 sql脚本文件并保存为*.sql格式 2.找到 SQLCMD.EXE 文件所在的路径(每个版本sql路径不一样) C:\Pr ...
- linux下vi编辑器常用命令
最近折腾云主机centOS,不得不接触到各种命令,特别是vi编辑器. 时常悔恨当时没好好听金老伯的linux课,导致现在操作命令用的十分生疏,甚至跳转行首行尾都要查一查才知道. 所以〒▽〒有了下面这篇 ...
- 解决Another app is currently holding the yum lock; waiting for it to exit...问题
在下载安装nginx时出现 Another app is currently holding the yum lock; waiting for it to exit...问题 yum被锁定了 可以使 ...
- 图论+思维(2019牛客国庆集训派对day2)
题意:https://ac.nowcoder.com/acm/contest/1107/J n个点的完全图编号0-n-1,第i个点的权值为2^i,原先是先手选取一些边,然后后手选取一些点,满足先手选取 ...
- RMQ+差分处理(Let Them Slide)Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)
题意:https://codeforc.es/contest/1208/problem/E 现有n行w列的墙,每行有一排连续方块,一排方块可以左右连续滑动,且每个方块都有一个价值,第i 列的价值定义为 ...
- linux 查找大文件
查看磁盘使用情况:df -h [root@iZwz9gs2zseivevv1k5vnkZ /]# df -h Filesystem Size Used Avail Use% Mounted on /d ...
- day03-04
光驱 历史的东西 远程管理卡 它的作用是通过网络远程(异地)开关服务器,并可以查看服务器开关的过程等信息,早期(2010年以前),服务器托管在IDC机房,出问题,还得跑机房或者请机房的人管理,有了 ...
- 算法:二叉树的层次遍历(递归实现+非递归实现,lua)
二叉树知识参考:深入学习二叉树(一) 二叉树基础 递归实现层次遍历算法参考:[面经]用递归方法对二叉树进行层次遍历 && 二叉树深度 上面第一篇基础写得不错,不了解二叉树的值得一看. ...