C - Covered Points Count

CodeForces - 1000C

You are given nn segments on a coordinate line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

Your task is the following: for every k∈[1..n]k∈[1..n], calculate the number of points with integer coordinates such that the number of segments that cover these points equals kk. A segment with endpoints lili and riri covers point xx if and only if li≤x≤rili≤x≤ri.

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of segments.

The next nn lines contain segments. The ii-th line contains a pair of integers li,rili,ri (0≤li≤ri≤10180≤li≤ri≤1018) — the endpoints of the ii-th segment.

Output

Print nn space separated integers cnt1,cnt2,…,cntncnt1,cnt2,…,cntn, where cnticnti is equal to the number of points such that the number of segments that cover these points equals to ii.

Examples

Input

30 31 33 8

Output

6 2 1

Input

31 32 45 7

Output

5 2 0

Note

The picture describing the first example:

Points with coordinates [0,4,5,6,7,8][0,4,5,6,7,8] are covered by one segment, points [1,2][1,2] are covered by two segments and point [3][3] is covered by three segments.

The picture describing the second example:

Points [1,4,5,6,7][1,4,5,6,7] are covered by one segment, points [2,3][2,3] are covered by two segments and there are no points covered by three segments.

题意:

给你n个线段

让你输出有多少个点被1~n个线段覆盖?

思路:

将线段拆成点,左端点权值为1,右端点权值为-1,离散化端点之后从左往右扫,过程中维护左端点和当前区间被多少个线段覆盖,统计答案就行了。

注意:

因为l~r线段中包括的点数是r-l+1,所以我们可以直接r++

map会根据firstkey 即ll排好序,所以可以直接for(auto : T)

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
ll l, r;
map<ll, ll> m;
ll ans[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n) {
cin >> l >> r;
r++;
m[l]++;
m[r]--;
}
ll cnt = 0ll;
l = 0ll; for (auto x : m) {
ll len = x.fi - l;
ans[cnt] += len;
l = x.fi;
cnt += x.se;
}
repd(i, 1, n) {
cout << ans[i];
if (i != n) {
cout << " ";
} else {
cout << endl;
}
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

C - Covered Points Count CodeForces - 1000C (差分,离散化,统计)的更多相关文章

  1. Educational Codeforces Round 46 C - Covered Points Count

    C - Covered Points Count emmm 好像是先离散化一下 注意 R需要+1 这样可以确定端点 emmm 扫描线?瞎搞一下? #include<bits/stdc++.h&g ...

  2. Covered Points Count(思维题)

    C. Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  3. Covered Points Count CF1000C 思维 前缀和 贪心

     Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  4. CodeForces 1000C Covered Points Count(区间线段覆盖问题,差分)

    https://codeforces.com/problemset/problem/1000/C 题意: 有n个线段,覆盖[li,ri],最后依次输出覆盖层数为1~n的点的个数. 思路: 区间线段覆盖 ...

  5. codeforces 1000C - Covered Points Count 【差分】

    题目:戳这里 题意:给出n个线段,问被1~n个线段覆盖的点分别有多少. 解题思路: 这题很容易想到排序后维护每个端点被覆盖的线段数,关键是端点值不好处理.比较好的做法是用差分的思想,把闭区间的线段改为 ...

  6. 【CF1000C】Covered Points Count(离散化+差分)

    点此看题面 大致题意: 给出\(n\)条线段,分别求有多少点被覆盖\(1\)次.\(2\)次...\(n\)次. 正常的算法 好吧,这道题目确实有个很简单的贪心做法(只可惜我做的时候没有想到,结果想了 ...

  7. cf1000C Covered Points Count (差分+map)

    考虑如果数字范围没有这么大的话,直接做一个差分数组就可以了 但现在变大了 所以要用一个map来维护 #include<bits/stdc++.h> #define pa pair<i ...

  8. Educational Codeforces Round 46 (Rated for Div. 2) C. Covered Points Count

    Bryce1010模板 http://codeforces.com/problemset/problem/1000/C 题意:问你从[l,r]区间的被多少条线覆盖,列出所有答案. 思路:类似括号匹配的 ...

  9. EDU 50 E. Covered Points 利用克莱姆法则计算线段交点

    E. Covered Points 利用克莱姆法则计算线段交点.n^2枚举,最后把个数开方,从ans中减去. ans加上每个线段的定点数, 定点数用gcs(△x , △y)+1计算. #include ...

随机推荐

  1. eclipse 建立Maven java工程

    1.在项目资源管理器右键---新建---项目 2.在选择向导里选择Maven---Maven Project 3.选择默认的工作空间,下一步 4.选择箭头所示选项 5.输入组织名和工程名.点击完成

  2. Linux-android 模拟器使用

    1.把sdcard挂载到一个文件夹 mkdir sdcard sudo mount -o loop sdcard.img sdcard 日志在sdcard下lm-kill文件下查看 注解: http: ...

  3. Stream系列(八)Reduce方法使用

    裁减计算 视频讲解:  https://www.bilibili.com/video/av77715582/ EmployeeTest.java package com.example.demo; i ...

  4. java实验题目

    1. 打印输出所有的“水仙花数”,所谓“水仙花数”是指一个3位数,其中各位数字立方和等于该数本身.例如,153是一个“水仙花数”. 实验源码: public class number1 { publi ...

  5. 啃掉Hadoop系列笔记(03)-Hadoop运行模式之本地模式

    Hadoop的本地模式为Hadoop的默认模式,不需要启用单独进程,直接可以运行,测试和开发时使用. 在<啃掉Hadoop系列笔记(02)-Hadoop运行环境搭建>中若环境搭建成功,则直 ...

  6. position: sticky 防坑指南

    position: sticky 防坑指南:https://www.jianshu.com/p/e217905e8b87 今天在写小程序项目的时候碰到一个需求是要把轮播图下面的标签栏滑动到顶部后固定, ...

  7. Python-基础-文件操作-随机存取

    随机存取 文件操作中,read()和write()都属于顺序存取,只能按顺序从头到尾的进行读写.实际上我们可以只访问文件中我们感兴趣的部分.对此,我们可以使用seek()和tell()方法.两种方法的 ...

  8. Codeforces 1237D. Balanced Playlist

    传送门 首先显然的,如果一个位置开始播放了两圈还没结束,那么就永远不会结束 先考虑位置 $1$ 开始播放,用一个 $multisetset$ 维护一下当前听的所有歌,直到某一首歌 $r$ 不合法了就停 ...

  9. 6-Perl 标量

    1.Perl 标量标量是一个简单的数据单元.标量可以是一个整数,浮点数,字符,字符串,段落或者一个完整的网页.以下实例演示了标量的简单应用:实例#!/usr/bin/perl$age = 20; # ...

  10. javascript——创建对象的方式

    对象:在JavaScript中,对象是拥有属性和方法的数据. JavaScript自定义对象方式有以下7种:直接创建方式.对象初始化器方式.构造函数方法.prototype原型方式.混合的构造函数/原 ...