1. DIN(Deep Interest Network)优点

  使用用户兴趣分布来表示用户多种多样的兴趣爱好。

  使用Attention机制来实现Local Activation,局部激活相关的历史兴趣信息,与当前候选Ad相关性越高的历史行为,会获得更高的Attention Score。

  针对模型训练,提出Dice激活函数,自适应正则,显著提升模型性能与收敛速度。

2. 整体网络结构

  

  利用Goods与Ads之间的相关性,引入注意力机制。DIN模型的输入分为2个部分:用户特征和广告(商品)特征。用户特征由用户历史行为的不同实体ID序列组成。在对用户的表示计算上引入了attention network 。DIN把用户特征、

用户历史行为特征进行embedding操作,视为对用户兴趣的表示,之后通过attention network,对每个兴趣表示赋予不同的权值。这个权值是由用户的兴趣和待估算的广告进行匹配计算得到的,如此模型结构符合了之前的两个观察:

用户兴趣的多峰分布以及部分对应。Attention network 的计算公式如下:

                              

其中, 代表用户表示向量, 是用户行为 的embedding向量,代表广告的表示向量。核心在于用户的表示向量不仅仅取决于用户的历史行为,而且还与待评估的广告有直接的关联。

3. 数据自适应激活函数

  PReLU

  

其中为指示函数,PReLU函数不适用每层输入为不同分布时的情况。

  自适应激活函数

  

其中在训练阶段,分别为每个mini-batch的均值和方差。

  

 4. 评价指标

  

其中为用户数,为第个用户的权重和AUC的值。

5. 参考博客

  https://www.cnblogs.com/rongyux/p/8026323.html

  https://www.jianshu.com/p/a356a135a0d2

DIN的更多相关文章

  1. DIN(Deep Interest Network of CTR) [Paper笔记]

    背景 经典MLP不能充分利用结构化数据,本文提出的DIN可以(1)使用兴趣分布代表用户多样化的兴趣(不同用户对不同商品有兴趣)(2)与attention机制一样,根据ad局部激活用户兴趣相关的兴趣(用 ...

  2. 推荐系统中的注意力机制——阿里深度兴趣网络(DIN)

    参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不 ...

  3. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  4. [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列

    [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 目录 [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 0x00 摘要 0x01 DIN 需要什么数据 0x02 如何产生数据 2 ...

  5. [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构

    [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 目录 [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x0 ...

  6. [阿里DIN]从论文源码学习 之 embedding_lookup

    [阿里DIN]从论文源码学习 之 embedding_lookup 目录 [阿里DIN]从论文源码学习 之 embedding_lookup 0x00 摘要 0x01 DIN代码 1.1 Embedd ...

  7. [阿里DIN] 从论文源码学习 之 embedding层如何自动更新

    [阿里DIN] 从论文源码学习 之 embedding层如何自动更新 目录 [阿里DIN] 从论文源码学习 之 embedding层如何自动更新 0x00 摘要 0x01 DIN源码 1.1 问题 1 ...

  8. 推荐系统---深度兴趣网络DIN&DIEN

    深度学习在推荐系统.CTR预估领域已经有了广泛应用,如wide&deep.deepFM模型等,今天介绍一下由阿里算法团队提出的深度兴趣网络DIN和DIEN两种模型 paper DIN:http ...

  9. [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念

    [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 目录 [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 0x00 摘要 0x01 矩阵乘积 1.1 matmul pr ...

随机推荐

  1. gtid 1032错误案例

    gtid 1032错误案例 大致背景: 分别在主从上删除了系统冗余账号. mysql> delete from mysql.user where host='::1';Query OK, 1 r ...

  2. SSH整合框架

    实现登录.新闻增删改查.树形菜单 引入pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi ...

  3. 灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)

    学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  4. SimpleThreadPool给线程池增加拒绝策略和停止方法

    给线程池增加拒绝策略和停止方法 package com.dwz.concurrency.chapter13; import java.util.ArrayList; import java.util. ...

  5. js获取高度和宽度

      CreateTime--2017年7月24日10:15:47Author:Marydon js获取高度和宽度 参考连接:http://www.cnblogs.com/EasonJim/p/6229 ...

  6. find命令不递归查询子目录

    [root@dbrg-2 test]# find .  ! -name "." -type d -prune -o -type f -name "*.jpg" ...

  7. <context:component-scan>标签报错解决方案

  8. Springboot集成MongoDB实现CRUD

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  9. TCP之连接的建立和终止

    1. 连接的建立 TCP 连接建立的三次握手 如上图所示,TCP 连接的建立会发生如下述情形: 服务器必须准备好接受外来的连接.这通常通过调用 socket.bind 和 listen 这 3 个函数 ...

  10. 提问(prompt)

    prompt弹出消息对话框,通常用于询问一些需要与用户交互的信息.弹出消息对话框(包含一个确定按钮.取消按钮与一个文本输入框). 语法: prompt(str1, str2); 参数说明: str1: ...