缩点后在一个DAG上求最长点权链 和方案数

注意转移条件和转移状态

            if (nowmaxn[x] > nowmaxn[v]) {
ans[v] = ans[x];
nowmaxn[v] = nowmaxn[x];
} else if (nowmaxn[x] == nowmaxn[v]) {
ans[v] = (ans[v] + ans[x]) % X;
}
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
int deep, colorsum = ;
int top;/*sta目前的大小*/
int dfn[MAXN], color[MAXN], low[MAXN];
int sta[MAXN];//存着当前所有可能能构成强连通分量的点
bool visit[MAXN];//表示一个点目前是否在sta中
int cnt[MAXN];//各个强连通分量中含点的数目
int to[MAXM << ], nxt[MAXM << ], Head[MAXN], ed = ;
inline void addedge(int u, int v)
{
to[++ed] = v;
nxt[ed] = Head[u];
Head[u] = ed;
}
void tarjan(int x)
{
dfn[x] = ++deep;
low[x] = deep;
visit[x] = ;
sta[++top] = x;
for (int i = Head[x]; i; i = nxt[i]) {
int v = to[i];
if (!dfn[v]) {
tarjan(v);
low[x] = min(low[x], low[v]);
} else {
if (visit[v]) {
low[x] = min(low[x], low[v]);
}
}
}
if (dfn[x] == low[x]) {
color[x] = ++colorsum;
visit[x] = ;
while (sta[top] != x) {
color[sta[top]] = colorsum;
visit[sta[top--]] = ;
}
top--;
}
}
int X;
int du[MAXN];
vector<int> g[MAXN];
map<pair<int, int>, int> mp, mp2;
queue<int> que;
int ans[MAXN];
int nowmaxn[MAXN];
int main()
{
int n, m;
int u, v;
scanf("%d %d %d", &n, &m, &X);
for (int i = ; i <= m; i++) {
scanf("%d %d", &u, &v);
if (!mp2[make_pair(u, v)]) {
addedge(u, v);
mp2[make_pair(u, v)] = ;
}
}
for (int i = ; i <= n; i++) {
if (!dfn[i]) {
tarjan(i);
}
cnt[color[i]]++;
}
for (u = ; u <= n; u++) {
int x = color[u];
for (int i = Head[u]; i; i = nxt[i]) {
v = to[i];
int y = color[v];
if (x != y) {
if (!mp[make_pair(x, y)]) {
g[x].push_back(y);
du[y]++;
mp[make_pair(x, y)] = ;
}
}
}
}
for (int i = ; i <= colorsum; i++) {
if (du[i] == ) {
que.push(i);
ans[i] = ;
}
}
while (que.size()) {
int x = que.front();
que.pop();
nowmaxn[x] += cnt[x];
for (int i = ; i < g[x].size(); i++) {
v = g[x][i];
if (nowmaxn[x] > nowmaxn[v]) {
ans[v] = ans[x];
nowmaxn[v] = nowmaxn[x];
} else if (nowmaxn[x] == nowmaxn[v]) {
ans[v] = (ans[v] + ans[x]) % X;
}
du[v]--;
if (du[v] == ) {
que.push(v);
}
}
}
int anser = ;
int maxnn = ;
for (int i = ; i <= colorsum; i++) {
if (nowmaxn[i] > maxnn) {
anser = ans[i];
maxnn = nowmaxn[i];
} else if (nowmaxn[i] == maxnn) {
anser = (anser + ans[i]) % X;
}
}
cout << maxnn << endl;
cout << anser << endl; }

BZOJ 1093 强连通缩点+DAG拓扑DP的更多相关文章

  1. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  2. BZOJ 5450 轰炸 (强连通缩点+DAG最长路)

    <题目链接> 题目大意: 有n座城市,城市之间建立了m条有向的地下通道.你需要发起若干轮轰炸,每轮可以轰炸任意多个城市.但每次轰炸的城市中,不能存在两个不同的城市i,j满足可以通过地道从城 ...

  3. bzoj1179: [Apio2009]Atm scc缩点+dag上dp

    先把强连通缩点,然后变成了dag,dp求终点是酒吧的最长路即可, /************************************************************** Pro ...

  4. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  5. Tarjan缩点+DAG图dp

    题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只 ...

  6. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  7. BZOJ5017 [Snoi2017]炸弹[线段树优化建边+scc缩点+DAG上DP/线性递推]

    方法一: 朴素思路:果断建图,每次二分出一个区间然后要向这个区间每个点连有向边,然后一个环的话是可以互相引爆的,缩点之后就是一个DAG,求每个点出发有多少可达点. 然后注意两个问题: 上述建边显然$n ...

  8. POJ 1236 学校传数据 强连通+缩点+DAG

    题意描述: 网络中有一些学校,每个学校可以分发软件给其他学校.可以向哪个分发取决于他们各自维护的一个清单. 两个问题 1:至少要copy多少份新软件给那些学校, 才能使得每个学校都能得到. 2:要在所 ...

  9. [模板][Luogu3387] 缩点 - Tarjan, 拓扑+DP

    Description 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次 ...

随机推荐

  1. Sed---linux系统三剑客(二)

    grep .sed.awk被称为linux中的"三剑客". grep 更适合单纯的查找或匹配文本 sed  更适合编辑匹配到的文本 awk  更适合格式化文本,对文本进行较复杂格式 ...

  2. ABC技术落地_成功带动lot物联网行业、金融科技行业、智能人才教育。

    ABC技术:AI:Python神经网络和自然语言处理(NLP):C ++ 机器学习和神经网络:Java自然语言处理.搜索算法.神经网络:Lisp归纳逻辑项目和机器学习.Big Date:R.Pytho ...

  3. 通过bat批处理程序如何实现在多个txt文件后面加上相同的一行文字

    通过bat批处理程序如何实现在多个txt文件后面加上相同的一行文字 set/p a=输入要增加的文字 for /f "delims=" %%i in ('dir /b *.txt' ...

  4. 关于使用Arduino做开发的理解

    转载自arduino中文社区 https://www.arduino.cn/thread-5414-1-1.html 见到很多人对Arduino的开发方法 .应用场景有误解,特别开个帖子说明下. 误解 ...

  5. 源码分析之AsyncTask

    AsyncTask在Android中是很常用的异步线程,那么AsyncTask和Thread有什么区别呢?这里将从源码角度深入理解AsyncTask的设计和工作原理,这里的AsyncTask基于SDK ...

  6. PYTHON 100days学习笔记008-3:输入和输出

    目录 Day008-03:Python3 输入和输出 1.输出格式美化 1.1 str.format()用法 1.2 旧式字符串格式化 2.读取键盘输入 3.读和写文件 4.文件对象的方法 4.1 f ...

  7. jdk1.8 -- Collectors 的使用

    package com.collector; import java.util.ArrayList; import java.util.Arrays; import java.util.Collect ...

  8. 性能工具之JMeter+InfluxDB+Grafana打造压测可视化实时监控(centos7环境)

    前提条件,已经安装jmeter并可以运行 1.安装influxdata wget et https://dl.influxdata.com/influxdb/releases/influxdb-1.7 ...

  9. 小菜鸟之shell

    Linux shell编程 目录 什么是Shell 1 Shell脚本的执行方式 1 第一种:输入脚本的绝对路径或相对路径 1 第二种:bash或sh +脚本 1 Shell中的变量 2 定义变量 2 ...

  10. HDU 3642 求体积交集

    Get The Treasury 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=3642 Problem Description Jack knows ...