传送门

  首先肯定要跑一个最小割也就是最大流

  然后我们把残量网络tarjan,用所有没有满流的边来缩点

  一条边如果没有满流,那它就不可能被割了

  一条边如果所属的两个强联通分量不同,它就可以被割

  一条边如果所属的两个点一个与源点同块,一个与汇点同块,那么它就可以一定在最小割集合中

  为啥我也不会证,直接搬一下隔壁的吧

  1.将每个SCC缩成一个点,得到的新图就只含有满流边了。那么新图的任一s-t割都对应原图的某个最小割,从中任取一个把id[u]和id[v]割开的割即可证明。

   2.假设将(u,v)的边权增大,那么残余网络中会出现s->u->v->t的通路,从而能继续增广,于是最大流流量(也就是最小割容量)会增大。这即说明(u,v)是最小割集中必须出现的边。

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int head[N],Next[M],ver[M],edge[M],tot=;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
int dep[N],cur[N],s,t,n,m;
queue<int> q;
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=;i<=n;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(u==t||!limit) return limit;
int flow=,f;
for(int i=cur[u];i;i=Next[i]){
int v=ver[i];cur[u]=i;
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
if(!flow) dep[u]=-;
return flow;
}
int dfn[N],low[N],st[N],c[N],top,cnt,num;
void tarjan(int u){
dfn[u]=low[u]=++num,st[++top]=u;
for(int i=head[u];i;i=Next[i])
if(edge[i]){
int v=ver[i];
if(!dfn[v]) tarjan(v),cmin(low[u],low[v]);
else if(!c[v]) cmin(low[u],dfn[v]);
}
if(dfn[u]==low[u])
for(++cnt;st[top+]!=u;--top) c[st[top]]=cnt;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read(),s=read(),t=read();
for(int i=;i<=m;++i){
int u=read(),v=read(),e=read();add(u,v,e);
}
while(bfs()) dfs(s,inf);
for(int i=;i<=n;++i)
if(!dfn[i]) tarjan(i);
for(int i=;i<=tot;i+=){
printf("%d %d\n",!edge[i]&&c[ver[i]]!=c[ver[i^]],c[ver[i^]]==c[s]&&c[ver[i]]==c[t]);
}
return ;
}
 

bzoj1797: [Ahoi2009]Mincut 最小割(网络流,缩点)的更多相关文章

  1. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  2. bzoj1797: [Ahoi2009]Mincut 最小割

    最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...

  3. bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)

    1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...

  4. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  5. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

  6. 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割

    结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...

  7. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  8. BZOJ 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2076  Solved: 885[Submit] ...

  9. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

随机推荐

  1. nginx http跳https配置

    为了数据传输的安全性以及防止网页被恶意篡改,现在大多数网站都配置了https. 如何保证用户都是通过https进行访问呢? 如果有用到nginx,我们可以配置强制跳转. 在nginx配置中添加: se ...

  2. VS2013:error C1069: 无法读取编译器命令行

    前一阵搞python和matlab,没用VS 2013,今天打开一个C++程序想跑一跑,突然蹦出这么个错误,然后发现电脑上所有的程序都会这样了. 后来发现是TMP/TEMP环境变量路径有空格的问题,更 ...

  3. java知识随笔整理-标量函数和表值函数

    以sql server为例: 1.表值函数 用户定义表值函数返回 table 数据类型,表是单个 SELECT 语句的结果集. 示例代码CREATE FUNCTION Test_GetEmployee ...

  4. FastJson 介绍

    Json详解 Json是一种轻量级的数据交换格式,采用一种“键:值”对的文本格式来存储和表示数据,在系统交换数据过程中常常被使用,是一种理想的数据交换语言.在使用 Java 做 Web 开发时,不可避 ...

  5. CodeBlocks 配置

    CodeBlocks 配置 Code::Blocks 17.12 时间:2019.6 下载网址 http://www.codeblocks.org/downloads/26 ,这里选择的是 mingw ...

  6. 【LOJ】#3097. 「SNOI2019」通信

    LOJ#3097. 「SNOI2019」通信 费用流,有点玄妙 显然按照最小路径覆盖那题的建图思路,把一个点拆成两种点,一种是从这个点出去,标成\(x_{i}\),一种是输入到这个点,使得两条路径合成 ...

  7. Linux IO模式以及select poll epoll详解

    一 背景 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案是不同的.所以先限定一下本文的上下文. 本文讨论的背景是Linux环境下的network ...

  8. mysqlbinlog实战

    关于mysqlbinlog命令,下列参数应用频率较高:--base64-output:选项有三个参数,never表示不处理ROW格式日志,只处理传统的基于STATEMENT格式日志.decode-ro ...

  9. html5手机网页开发,中文输入法下软键盘遮挡输入框

    安卓手机解决办法 微信UI框架weui中给出了解决方法:weui框架http://weui.github.io/weui/example.js // .container 设置了 overflow 属 ...

  10. 怎样写一个 "Hello, World!"

    第一步: 打开浏览器, 按 F12 键或 Ctrl + Shift + J.   注意:  1. 打开的这个界面是浏览器的开发者工具界面. 2. 顶部有许多Tab栏, 如: Elements / Co ...