传送门

  首先肯定要跑一个最小割也就是最大流

  然后我们把残量网络tarjan,用所有没有满流的边来缩点

  一条边如果没有满流,那它就不可能被割了

  一条边如果所属的两个强联通分量不同,它就可以被割

  一条边如果所属的两个点一个与源点同块,一个与汇点同块,那么它就可以一定在最小割集合中

  为啥我也不会证,直接搬一下隔壁的吧

  1.将每个SCC缩成一个点,得到的新图就只含有满流边了。那么新图的任一s-t割都对应原图的某个最小割,从中任取一个把id[u]和id[v]割开的割即可证明。

   2.假设将(u,v)的边权增大,那么残余网络中会出现s->u->v->t的通路,从而能继续增广,于是最大流流量(也就是最小割容量)会增大。这即说明(u,v)是最小割集中必须出现的边。

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int head[N],Next[M],ver[M],edge[M],tot=;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
int dep[N],cur[N],s,t,n,m;
queue<int> q;
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=;i<=n;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(u==t||!limit) return limit;
int flow=,f;
for(int i=cur[u];i;i=Next[i]){
int v=ver[i];cur[u]=i;
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
if(!flow) dep[u]=-;
return flow;
}
int dfn[N],low[N],st[N],c[N],top,cnt,num;
void tarjan(int u){
dfn[u]=low[u]=++num,st[++top]=u;
for(int i=head[u];i;i=Next[i])
if(edge[i]){
int v=ver[i];
if(!dfn[v]) tarjan(v),cmin(low[u],low[v]);
else if(!c[v]) cmin(low[u],dfn[v]);
}
if(dfn[u]==low[u])
for(++cnt;st[top+]!=u;--top) c[st[top]]=cnt;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read(),s=read(),t=read();
for(int i=;i<=m;++i){
int u=read(),v=read(),e=read();add(u,v,e);
}
while(bfs()) dfs(s,inf);
for(int i=;i<=n;++i)
if(!dfn[i]) tarjan(i);
for(int i=;i<=tot;i+=){
printf("%d %d\n",!edge[i]&&c[ver[i]]!=c[ver[i^]],c[ver[i^]]==c[s]&&c[ver[i]]==c[t]);
}
return ;
}
 

bzoj1797: [Ahoi2009]Mincut 最小割(网络流,缩点)的更多相关文章

  1. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  2. bzoj1797: [Ahoi2009]Mincut 最小割

    最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...

  3. bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)

    1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...

  4. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  5. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

  6. 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割

    结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...

  7. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  8. BZOJ 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2076  Solved: 885[Submit] ...

  9. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

随机推荐

  1. 【Python】【demo实验35】【基础实验】【排序】【选择法排序】

    原题: 使用选择法对10个数字排序: 即取10个数中最小的放在第一个位置,再取剩下9个中最小的放在第二个位置... 我的源码: #!/usr/bin/python # encoding=utf-8 # ...

  2. SQLite进阶-13.Autoincrement关键字

    目录 AUTOINCREMENT 是一个关键字,用于表中的字段值自动递增.我们可以在创建表时在特定的列名称上使用 AUTOINCREMENT 关键字实现该字段值的自动增加. 关键字 AUTOINCRE ...

  3. LC 94. Binary Tree Inorder Traversal

    问题描述 Given a binary tree, return the inorder traversal of its nodes' values. (左 - 根 - 右) Example: In ...

  4. Go语言操作Redis

    Go语言操作Redis Redis介绍 Redis是一个开源的内存数据库,Redis提供了多种不同类型的数据结构,很多业务场景下的问题都可以很自然地映射到这些数据结构上.除此之外,通过复制.持久化和客 ...

  5. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  6. MyBatis 源码篇-资源加载

    本章主要描述 MyBatis 资源加载模块中的 ClassLoaderWrapper 类和 Java 加载配置文件的三种方式. ClassLoaderWrapper 上一章的案例,使用 org.apa ...

  7. ASP.NET Core中间件实现分布式 Session(转载)

    ASP.NET Core中间件实现分布式 Session 1. ASP.NET Core中间件详解 1.1. 中间件原理 1.1.1. 什么是中间件 1.1.2. 中间件执行过程 1.1.3. 中间件 ...

  8. boost random library的使用

      生成满足一定分布的随机数,是统计模拟.系统仿真等应用中最基本的要求.matlab中提供了函数可以生成各种常见分布的随机数,c++使用boost random库也可以很容易实现. 一.例子 boos ...

  9. 有趣的"=="与"==="

    console.log([]==![]);//true //"=="会进行类型转换,转换成统一类型进行比较 // !符号优于==,[]boolean值为TRUE,所以![]就是FA ...

  10. Linux学习(一)-安装vm虚拟机以及如何在虚拟机上安装Centos系统

    (一)基本说明 学习Linux需要一个环境,我们需要创建一个虚拟机,然后在虚拟机上安装一个Centos系统来学习. 1)安装软件vm12; 2)通过vm12创建一个虚拟机空间; 3)在vm12创建好的 ...