给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度.

区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T$连边$(k,0)$. 对于每个区间$(l,r)$, $l$与$r$连边$(1,l-r)$.

最小费用相反数就为最大长度

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#include <unordered_map>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head #ifdef ONLINE_JUDGE
const int N = 1e6+10;
#else
const int N = 999;
#endif int n, m, k, S, T;
struct _ {int from,to,w,f;};
vector<_> E;
vector<int> g[N];
int a[N], pre[N], inq[N], d[N];
int mf,mc;
queue<int> q;
void add(int x, int y, int c, int w) {
g[x].pb(E.size());
E.pb({x,y,c,w});
g[y].pb(E.size());
E.pb({y,x,0,-w});
}
void mfmc() {
mf=mc=0;
while (1) {
REP(i,1,T) a[i]=d[i]=INF,inq[i]=0;
q.push(S),d[S]=0;
while (!q.empty()) {
int x=q.front(); q.pop();
inq[x] = 0;
for (auto t:g[x]) {
auto e=E[t];
if (e.w>0&&d[e.to]>d[x]+e.f) {
d[e.to]=d[x]+e.f;
pre[e.to]=t;
a[e.to]=min(a[x],e.w);
if (!inq[e.to]) {
inq[e.to]=1;
q.push(e.to);
}
}
}
}
if (a[T]==INF) break;
for (int u=T;u!=S;u=E[pre[u]].from) {
E[pre[u]].w-=a[T];
E[pre[u]^1].w+=a[T];
}
mf+=a[T],mc+=a[T]*d[T];
}
} int b[N], l[N], r[N];
int main() {
scanf("%d%d", &n, &k);
REP(i,1,n) {
scanf("%d%d",l+i,r+i);
b[++*b]=l[i],b[++*b]=r[i];
}
sort(b+1,b+1+*b),*b=unique(b+1,b+1+*b)-b-1;
REP(i,1,n) {
l[i]=lower_bound(b+1,b+1+*b,l[i])-b;
r[i]=lower_bound(b+1,b+1+*b,r[i])-b;
}
S = *b+1, T = S+1;
add(S,1,k,0),add(*b,T,k,0);
REP(i,2,*b) add(i-1,i,k,0);
REP(i,1,n) add(l[i],r[i],1,-b[r[i]]+b[l[i]]);
mfmc();
printf("%d\n", -mc);
}

「网络流 24 题」最长 k 可重区间集的更多相关文章

  1. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

  2. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  3. 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集

    题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...

  4. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  5. *LOJ#6227. 「网络流 24 题」最长k可重线段集问题

    $n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用( ...

  6. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  7. 【网络流24题】最长k可重区间集问题(费用流)

    [网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...

  8. 网络流24题:最长 k 可重区间集问题题解

    最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...

  9. 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)

    题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...

随机推荐

  1. zabbix监控windows案例

    首先在zabbix官网下载zabbix软件包:https://www.zabbix.com/ 下载完成之后,将其解压到D盘 # 配置与安装,配置zabbix agent相关配置. 找到conf下的配置 ...

  2. eclipse将web项目部署到tomcat

    在 eclipse 中,选择 Window--->Preferences--->Server--->Runtime Environments,选择 Add 按钮 在弹出的对话框中,选 ...

  3. Js 中那些 隐式转换

    曾经看到过这样一个代码:  (!(~+[])+{})[--[~+""][+[]]*[~+[]]+~~!+[]]+({}+[])[[~!+[]*~+[]]] = sb , 你敢相信, ...

  4. JAVA基础知识|小知识点

    1.强烈建议,不使用char类型 那么,到底为什么java里不推荐使用char类型呢?其实,1个java的char字符并不完全等于一个unicode的字符.char采用的UCS-2编码,是一种淘汰的U ...

  5. getBoundingClientRect使用指南

    getBoundingClientRect使用指南 author: @TiffanysBear 主要介绍getBoundingClientRect的基本属性,以及具体的使用场景和一些需要注意的问题. ...

  6. Linux下R环境安装

    R环境的两种安装方式,源码编译安装和yum在线安装 第一种:源码编译安装 1.首先,从官网上下载3.5.0版本 2.下载完后记得解压,我的习惯是解压在/usr/local下面 tar -zxvf R- ...

  7. 在HTML中直接使用onclick很不专业

    原因 1.onclick添加的事件处理函数是在全局环境下执行的,这污染了全局环境,很容易产生意料不到的后果: 2.给很多DOM元素添加onclick事件,可能会影响网页的性能,毕竟网页需要的事件处理函 ...

  8. SQL-W3School-高级:SQL ALTER TABLE 语句

    ylbtech-SQL-W3School-高级:SQL ALTER TABLE 语句 1.返回顶部 1. ALTER TABLE 语句 ALTER TABLE 语句用于在已有的表中添加.修改或删除列. ...

  9. C之输入输出

    %d - int%ld – long (long int)%lld - long long%hd – short 短整型 (half int) %c - char%f - float%lf – dou ...

  10. 阶段5 3.微服务项目【学成在线】_day01 搭建环境 CMS服务端开发_01-项目概述-功能构架-项目背景

    这个就是博学谷下的 在线教育平台