「网络流 24 题」最长 k 可重区间集
给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度.
区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T$连边$(k,0)$. 对于每个区间$(l,r)$, $l$与$r$连边$(1,l-r)$.
最小费用相反数就为最大长度
#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#include <unordered_map>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head #ifdef ONLINE_JUDGE
const int N = 1e6+10;
#else
const int N = 999;
#endif int n, m, k, S, T;
struct _ {int from,to,w,f;};
vector<_> E;
vector<int> g[N];
int a[N], pre[N], inq[N], d[N];
int mf,mc;
queue<int> q;
void add(int x, int y, int c, int w) {
g[x].pb(E.size());
E.pb({x,y,c,w});
g[y].pb(E.size());
E.pb({y,x,0,-w});
}
void mfmc() {
mf=mc=0;
while (1) {
REP(i,1,T) a[i]=d[i]=INF,inq[i]=0;
q.push(S),d[S]=0;
while (!q.empty()) {
int x=q.front(); q.pop();
inq[x] = 0;
for (auto t:g[x]) {
auto e=E[t];
if (e.w>0&&d[e.to]>d[x]+e.f) {
d[e.to]=d[x]+e.f;
pre[e.to]=t;
a[e.to]=min(a[x],e.w);
if (!inq[e.to]) {
inq[e.to]=1;
q.push(e.to);
}
}
}
}
if (a[T]==INF) break;
for (int u=T;u!=S;u=E[pre[u]].from) {
E[pre[u]].w-=a[T];
E[pre[u]^1].w+=a[T];
}
mf+=a[T],mc+=a[T]*d[T];
}
} int b[N], l[N], r[N];
int main() {
scanf("%d%d", &n, &k);
REP(i,1,n) {
scanf("%d%d",l+i,r+i);
b[++*b]=l[i],b[++*b]=r[i];
}
sort(b+1,b+1+*b),*b=unique(b+1,b+1+*b)-b-1;
REP(i,1,n) {
l[i]=lower_bound(b+1,b+1+*b,l[i])-b;
r[i]=lower_bound(b+1,b+1+*b,r[i])-b;
}
S = *b+1, T = S+1;
add(S,1,k,0),add(*b,T,k,0);
REP(i,2,*b) add(i-1,i,k,0);
REP(i,1,n) add(l[i],r[i],1,-b[r[i]]+b[l[i]]);
mfmc();
printf("%d\n", -mc);
}
「网络流 24 题」最长 k 可重区间集的更多相关文章
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- *LOJ#6227. 「网络流 24 题」最长k可重线段集问题
$n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用( ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)
题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...
随机推荐
- Redis 的几种常见使用方式
常见使用方式 Redis 的几种常见使用方式包括: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster Redis 自研 各种使用方式的优 ...
- 调试NTDLL加载
1 随便切到一个进程 0: kd> !process 0 0 explorer.exePROCESS 8157e9a8 SessionId: 0 Cid: 06a4 Peb: 7ffde000 ...
- win10+mysql8.0安装
一.下载 mysql8.0 windows zip包下载地址: https://dev.mysql.com/downloads/mysql/ 1540951981(1).png 二.安装 1.解压 ...
- 前端中关于HTML标签的属性for的理解
First:<label>的说明:1.<label>标签为input元素定义标注(标识)2.label元素不会像用户呈现任何特殊的效果,仅作为显示扩展:不过,它为鼠标用户改进了 ...
- Java 检查IPv6地址的合法性
Java 检查IPv6地址的合法性 由于IPv4资源即将耗尽,IPv6将要正式启用,这是大势所趋. 一些现有的服务和应用逐步要对IPv6支持,目前还处在过渡阶段. 提前了解一些IPv6的知识,还是有必 ...
- java+断点续传
在Web应用系统开发中,文件上传和下载功能是非常常用的功能,今天来讲一下JavaWeb中的文件上传和下载功能的实现. 先说下要求: PC端全平台支持,要求支持Windows,Mac,Linux 支持所 ...
- Pycharm连接windows上python
首先我们需要下载一个Python安装包,然后将安装包解压到某个盘符下, 然后我们打开Pycharm软件,点击左上角的File菜单,接着选择Settings选项,如下图所示 在弹出的Settings界面 ...
- LODOP纸张高度不定的纯文本累计高度
小票由于纸张没有确定的高度,根据内容多少,小票打印机出多少纸,在设置纸张的时候,需要把纸张设置成不定高的纸张.简短问答:小票打印 ,参考样例18 http://www.c-lodop.com/demo ...
- iOS-在AFN基础上进行网络请求的封装
网络请求的思路:如果请求成功的话AFN的responseObject就是解析好的. 1发送网络请求:get/post/或者别的 带上URL,需要传的参数 2判断后台网络状态码有没有请求成功: 3 请求 ...
- idea调试jdk1.8源码(最新)
我们发现如果,直接用idea点项目jdk源码进去后发现自己不能注释说明,非常麻烦,不便阅读记录 于是: 1.在安装的jdk1.8路径下,找到src.zip和javafx-src.zip压缩文件 ,解压 ...