mySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据?

1.限定 Redis 占用的内存,Redis 会根据自身数据淘汰策略,加载热数据到内存。
所以,计算一下 20W 数据大约占用的内存,然后设置一下 Redis 内存限制即可。

2.问题是什么数据?

比如用户数据。数据库有2000w条。
活跃用户:
redis sortSet里 放两天内(为方便取一天内活跃用户)登录过的用户,登录一次ZADD一次,如set已存在则覆盖其分数(登录时间)。键:login:users,值:分数 时间戳、value userid。设置一个周期任务,比如每天03:00:00点删除sort set中前一天3点前的数据(保证set不无序增长、留近一天内活跃用户)。

取时,拿到当前时间戳(int 10位),再减1天就可按分数范围取过去24h活跃用户。

3.看你的提问,应该只是把Redis当缓存来用.
提供一种简单实现缓存失效的思路: LRU(最近少用的淘汰)
即redis的缓存每命中一次,就给命中的缓存增加一定ttl(过期时间)(根据具体情况来设定, 比如10分钟).
一段时间后, 热数据的ttl都会较大, 不会自动失效, 而冷数据基本上过了设定的ttl就马上失效了.

4.

redis 内存数据集大小上升到一定大小的时候,会施行数据淘汰策略。

redis 提供 6种数据淘汰策略:

redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据

 

如何保证redis数据都是热点数据的更多相关文章

  1. 2000w数据,redis中只存放20w的数据,如何保证redis中的数据都是热点数据

    redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略. redis 提供 6种数据淘汰策略:voltile-lru:从已设置过期时间的数据集(server.db[i].expires) ...

  2. 如何保证Redis中的数据都是热点数据

    redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略.redis 提供 6种数据淘汰策略:volatile-lru:从已设置过期时间的数据集(server.db[i].expires) ...

  3. 2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

    redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略.redis 提供 6种数据淘汰策略: voltile-lru:从已设置过期时间的数据集(server.db[i].expires) ...

  4. MySQL 里有 2000w 数据,redis 中只存 20w 的数据,如 何保证 redis 中的数据都是热点数据?

    Redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略. 相关知识:Redis 提供 6 种数据淘汰策略: volatile-lru:从已设置过期时间的数据集(server.db[i]. ...

  5. 如何保证redis中存放的都是热点数据

    当redis使用的内存超过了设置的最大内存时,会触发redis的key淘汰机制,在redis 3.0中有6种淘汰策略: noeviction: 不删除策略.当达到最大内存限制时, 如果需要使用更多内存 ...

  6. 如何使redis中存放的都是热点数据?

    当redis使用的内存超过设置的最大内存时,会触发redis的key淘汰机制,在redis3.0中的6中淘汰策略如下: (1)noeviction :不删除策略.当达到最大内存限制时,如果需要使用更多 ...

  7. 怎么保证 redis 和 db 中的数据一致

    你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题? 首先需要考虑到:更新数据库或者更新缓存都有可能失败,在这种前提下分析业务带来的 ...

  8. 缓存雪崩、穿透如何解决,如何确保Redis只缓存热点数据?

    缓存雪崩如何解决? 缓存穿透如何解决? 如何确保Redis缓存的都是热点数据? 如何更新缓存数据? 如何处理请求倾斜? 实际业务场景下,如何选择缓存数据结构 缓存雪崩 缓存雪崩简单说就是所有请求都从缓 ...

  9. Redis 切片集群的数据倾斜分析

    Redis 中如何应对数据倾斜 什么是数据倾斜 数据量倾斜 bigkey导致倾斜 Slot分配不均衡导致倾斜 Hash Tag导致倾斜 数据访问倾斜 如何发现 Hot Key Hot Key 如何解决 ...

随机推荐

  1. Java 中要将 String 类型转化为 int 类型

    在 Java 中要将 String 类型转化为 int 类型时,需要使用 Integer 类中的 parseInt() 方法或者 valueOf() 方法进行转换. 例1: 1 2 3 4 5 6 S ...

  2. 阿里云 OSS 如何设置防盗链, 上个月图床流量耗费50G+,请求次数10W+,什么鬼?

    欢迎关注个人微信公众号: 小哈学Java, 文末分享阿里 P8 高级架构师吐血总结的 <Java 核心知识整理&面试.pdf>资源链接!! 个人网站: https://www.ex ...

  3. python 练习题:请利用循环依次对list中的每个名字打印出Hello, xxx!

    方法一: # -*- coding: utf-8 -*- # 请利用循环依次对list中的每个名字打印出Hello, xxx! L = ['Bart', 'Lisa', 'Adam'] n = 0 w ...

  4. EF Core中的DB First与Code First

    前言: 大家都习惯在程序中生成对应的model来对数据库进行操作,所以如何快速的生成数据库表的对应model,是基础之一.总结了一下在我的认知中大概是这个结构: Db first方式: 先创建好对应的 ...

  5. SQL 去重 DISTINCT 语法

    SQL SELECT DISTINCT语句 在表中可能会包含重复值.这并不成问题, 不过有时你也许希望仅仅列出不同(distinct)的值. 关键词DISTINCT 用于返回唯一不同的值 语法 SEL ...

  6. NSSM部署.Net Core到 Windows 服务

    NSSM 官网http://www.nssm.cc/,下载地址http://www.nssm.cc/download 简单点理解就是NSSM可以把一些exe程序封装成Windows服务,然后exe程序 ...

  7. 基于JDK1.8,Java容器源码分析

    容器源码分析 如果没有特别说明,以下源码分析基于 JDK 1.8. 在 IDEA 中 double shift 调出 Search EveryWhere,查找源码文件,找到之后就可以阅读源码. Lis ...

  8. vue-cli vue脚手架搭建步骤

    提前在E:\nodejs文件夹下建立node_gobal和node_cache 并配置环境变量NODE_PATH:E:\nodejs\node_global\node_modules 改变用户变量中的 ...

  9. android studio学习---签名打包的两种方式

    注:给我们自己开发的app签名,就代表着我自己的版权,以后要进行升级,也必须要使用相同的签名才行.签名就代表着自己的身份(即keystore),多个app可以使用同一个签名. 如果不知道签名是啥意思, ...

  10. 【转载】Gradle学习 第八章:依赖管理基础

    转载地址:http://ask.android-studio.org/?/article/10 This chapter introduces some of the basics of depend ...