如何保证redis数据都是热点数据
mySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据?
1.限定 Redis 占用的内存,Redis 会根据自身数据淘汰策略,加载热数据到内存。
所以,计算一下 20W 数据大约占用的内存,然后设置一下 Redis 内存限制即可。
2.问题是什么数据?
比如用户数据。数据库有2000w条。
活跃用户:
redis sortSet里 放两天内(为方便取一天内活跃用户)登录过的用户,登录一次ZADD一次,如set已存在则覆盖其分数(登录时间)。键:login:users,值:分数 时间戳、value userid。设置一个周期任务,比如每天03:00:00点删除sort set中前一天3点前的数据(保证set不无序增长、留近一天内活跃用户)。
取时,拿到当前时间戳(int 10位),再减1天就可按分数范围取过去24h活跃用户。
3.看你的提问,应该只是把Redis当缓存来用.
提供一种简单实现缓存失效的思路: LRU(最近少用的淘汰)
即redis的缓存每命中一次,就给命中的缓存增加一定ttl(过期时间)(根据具体情况来设定, 比如10分钟).
一段时间后, 热数据的ttl都会较大, 不会自动失效, 而冷数据基本上过了设定的ttl就马上失效了.
4.
redis 内存数据集大小上升到一定大小的时候,会施行数据淘汰策略。
redis 提供 6种数据淘汰策略:
redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据
如何保证redis数据都是热点数据的更多相关文章
- 2000w数据,redis中只存放20w的数据,如何保证redis中的数据都是热点数据
redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略. redis 提供 6种数据淘汰策略:voltile-lru:从已设置过期时间的数据集(server.db[i].expires) ...
- 如何保证Redis中的数据都是热点数据
redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略.redis 提供 6种数据淘汰策略:volatile-lru:从已设置过期时间的数据集(server.db[i].expires) ...
- 2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略.redis 提供 6种数据淘汰策略: voltile-lru:从已设置过期时间的数据集(server.db[i].expires) ...
- MySQL 里有 2000w 数据,redis 中只存 20w 的数据,如 何保证 redis 中的数据都是热点数据?
Redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略. 相关知识:Redis 提供 6 种数据淘汰策略: volatile-lru:从已设置过期时间的数据集(server.db[i]. ...
- 如何保证redis中存放的都是热点数据
当redis使用的内存超过了设置的最大内存时,会触发redis的key淘汰机制,在redis 3.0中有6种淘汰策略: noeviction: 不删除策略.当达到最大内存限制时, 如果需要使用更多内存 ...
- 如何使redis中存放的都是热点数据?
当redis使用的内存超过设置的最大内存时,会触发redis的key淘汰机制,在redis3.0中的6中淘汰策略如下: (1)noeviction :不删除策略.当达到最大内存限制时,如果需要使用更多 ...
- 怎么保证 redis 和 db 中的数据一致
你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题? 首先需要考虑到:更新数据库或者更新缓存都有可能失败,在这种前提下分析业务带来的 ...
- 缓存雪崩、穿透如何解决,如何确保Redis只缓存热点数据?
缓存雪崩如何解决? 缓存穿透如何解决? 如何确保Redis缓存的都是热点数据? 如何更新缓存数据? 如何处理请求倾斜? 实际业务场景下,如何选择缓存数据结构 缓存雪崩 缓存雪崩简单说就是所有请求都从缓 ...
- Redis 切片集群的数据倾斜分析
Redis 中如何应对数据倾斜 什么是数据倾斜 数据量倾斜 bigkey导致倾斜 Slot分配不均衡导致倾斜 Hash Tag导致倾斜 数据访问倾斜 如何发现 Hot Key Hot Key 如何解决 ...
随机推荐
- Java 中要将 String 类型转化为 int 类型
在 Java 中要将 String 类型转化为 int 类型时,需要使用 Integer 类中的 parseInt() 方法或者 valueOf() 方法进行转换. 例1: 1 2 3 4 5 6 S ...
- 阿里云 OSS 如何设置防盗链, 上个月图床流量耗费50G+,请求次数10W+,什么鬼?
欢迎关注个人微信公众号: 小哈学Java, 文末分享阿里 P8 高级架构师吐血总结的 <Java 核心知识整理&面试.pdf>资源链接!! 个人网站: https://www.ex ...
- python 练习题:请利用循环依次对list中的每个名字打印出Hello, xxx!
方法一: # -*- coding: utf-8 -*- # 请利用循环依次对list中的每个名字打印出Hello, xxx! L = ['Bart', 'Lisa', 'Adam'] n = 0 w ...
- EF Core中的DB First与Code First
前言: 大家都习惯在程序中生成对应的model来对数据库进行操作,所以如何快速的生成数据库表的对应model,是基础之一.总结了一下在我的认知中大概是这个结构: Db first方式: 先创建好对应的 ...
- SQL 去重 DISTINCT 语法
SQL SELECT DISTINCT语句 在表中可能会包含重复值.这并不成问题, 不过有时你也许希望仅仅列出不同(distinct)的值. 关键词DISTINCT 用于返回唯一不同的值 语法 SEL ...
- NSSM部署.Net Core到 Windows 服务
NSSM 官网http://www.nssm.cc/,下载地址http://www.nssm.cc/download 简单点理解就是NSSM可以把一些exe程序封装成Windows服务,然后exe程序 ...
- 基于JDK1.8,Java容器源码分析
容器源码分析 如果没有特别说明,以下源码分析基于 JDK 1.8. 在 IDEA 中 double shift 调出 Search EveryWhere,查找源码文件,找到之后就可以阅读源码. Lis ...
- vue-cli vue脚手架搭建步骤
提前在E:\nodejs文件夹下建立node_gobal和node_cache 并配置环境变量NODE_PATH:E:\nodejs\node_global\node_modules 改变用户变量中的 ...
- android studio学习---签名打包的两种方式
注:给我们自己开发的app签名,就代表着我自己的版权,以后要进行升级,也必须要使用相同的签名才行.签名就代表着自己的身份(即keystore),多个app可以使用同一个签名. 如果不知道签名是啥意思, ...
- 【转载】Gradle学习 第八章:依赖管理基础
转载地址:http://ask.android-studio.org/?/article/10 This chapter introduces some of the basics of depend ...