P3719 [AHOI2017初中组]rexp——递归模拟
没有什么算法的题做起来真不适应,这道题深深讽刺了我想用栈维护匹配括号个数的想法;
递归解决就行了;
时刻注意函数返回值是什么,边界条件是什么;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5+;
typedef double dd;
typedef long long ll;
ll n;
ll a[maxn];
ll id[maxn]; ll f[maxn],g[maxn]; ll b1[maxn],b2[maxn]; int len; ll query_front(int x)
{
ll ans=;
for(;x;x-=x&(-x)) ans=max(b1[x],ans);
return ans;
} ll query_back(int x)
{
ll ans=;
for(;x;x-=x&(-x)) ans=max(b2[x],ans);
return ans;
} void add_front(int x,ll y)
{
for(;x<=len;x+=x&(-x)) b1[x]=max(b1[x],y);
} void add_back(int x,ll y)
{
for(;x<=len;x+=x&(-x)) b2[x]=max(b2[x],y);
} dd ans; int qw[maxn]; int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
id[i]=a[i];
}
sort(id+,id+n+);
len=unique(id+,id+n+)-id-;
for(int i=;i<=n;i++) qw[i]=lower_bound(id+,id+len+,a[i])-id;
for(int i=;i<=n;i++)
{
f[i]=query_front(qw[i]-)+a[i];
g[n-i+]=query_back(qw[n-i+]-)+a[n-i+];
add_front(qw[i],f[i]);
add_back(qw[n-i+],g[n-i+]);
}
for(int i=;i<=n;i++)
{
ans=max(ans,max((dd)f[i],((dd)f[i]+(dd)g[i]-(dd)a[i])/2.0));
}
printf("%.3lf",ans);
return ;
}
P3719 [AHOI2017初中组]rexp——递归模拟的更多相关文章
- P3719 [AHOI2017初中组]rexp
P3719 [AHOI2017初中组]rexp一开始想的是类似计算式子的值的东西,用栈.然后发现处理最大值很麻烦,因为处理的很像子过程,所以考虑递归来做.碰到'('就递归一次,碰到'|'就取最大值再递 ...
- 洛谷P3719 [AHOI2017初中组]rexp
洛谷P3719 [AHOI2017初中组]rexp 题目背景 以下为不影响题意的简化版题目. 题目描述 给出一个由(,),|,a组成的序列,求化简后有多少个a. 化简规则: 1.形如aa...a|aa ...
- luogu3720 [AHOI2017初中组]guide[最短路]
初中组..唉 题意有点误解,当前在x点走一步,gps产生代价条件是沿非x到n的最短路走. 直接倒着跑两遍$i\sim n$的两种最短路,然后枚举每条边走的时候是否可以在两种最短路上,不是就产生1个代价 ...
- poj 1472(递归模拟)
题意:就是让你求出时间复杂度. 分析:由于指数最多为10次方,所以可以想到用一个数组保存各个指数的系数,具体看代码实现吧! 代码实现: #include<cstdio> #include& ...
- P1010 幂次方 递归模拟
题目描述 任何一个正整数都可以用22的幂次方表示.例如 137=2^7+2^3+2^0137=27+23+20 同时约定方次用括号来表示,即a^bab 可表示为a(b)a(b). 由此可知,13713 ...
- P2475 [SCOI2008]斜堆(递归模拟)
思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...
- 题解 P3717 【[AHOI2017初中组]cover】
题目链接 本题的大致思路就是搜索. 将矩阵初始化成false.先把灯塔标记.在搜一遍灯塔能照到的点并标记.最后搜一遍找被灯塔标记的个数. 详细解释见题解. 题解走起. #include<bits ...
- P3717 [AHOI2017初中组]cover
题目背景 以下为不影响题意的简化版题目. 题目描述 一个n*n的网格图上有m个探测器,每个探测器有个探测半径r,问这n*n个点中有多少个点能被探测到. 输入输出格式 输入格式: 第一行3个整数n,m, ...
- 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide
[题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...
随机推荐
- 跨域访问MVC
using MvcApp.Filters; using System; using System.Collections.Generic; using System.Linq; using Syste ...
- NIO开发Http服务器(4):Response封装和响应
最近学习了Java NIO技术,觉得不能再去写一些Hello World的学习demo了,而且也不想再像学习IO时那样编写一个控制台(或者带界面)聊天室.我们是做WEB开发的,整天围着tomcat.n ...
- 【转载】C#使用Math.Sqrt方法进行开平方操作
在C#的数学数值运算中,有时候需要进行对数值进行开平方操作,C#的数值计算类Math类中内置了开平方操作的方法Sqrt,直接调用此方法可计算出相应的平方值,Math.Sqrt方法签名为:double ...
- vue应用难点总结
一.父子组件生命周期 父组件create->子组件create->子组件mounted->父组件mounted 当一个钩子函数使用了异步请求时,并不会等该钩子函数中所有异步的回调都执 ...
- win10开启redis失败解决方案
输入命令:redis-server redis.windows.conf 提示:解决redis无法启动,报错:无法将“redis-server”项识别为 cmdlet.函数.脚本文件或可运行程 序的名 ...
- centos 7.6 安装php70
1.首先查看是否有老版本 yum list installed | grep php 2.如果安装的有,清除老版本 yum remove php.x86_64 php-cli.x86_64 php-c ...
- linux 显示不可见字符
在Linux中,cat -A file可以把文件中的所有可见的和不可见的字符都显示出来,在Vim中,如何将不可见字符也显示出来呢?当然,如果只是想在Vim中查看的话,可以这样:%!cat -A在Vim ...
- MySQL增加行号rownum
select * from ( select @rownum:=@rownum+1 AS rownum, app_t.* from ( select * from app_custom where 1 ...
- java写入内容到本地文件 -读取文件内容
/** 日志记录 * @author sys * @param content 要写入的类容 * @param path 目标路径 c:/log/ * @param filename 文件名 log. ...
- java请求url可以带参数
/** * * @param urlStr * url * @param content * 提交的参数 * @param encoding * 编码格式 * @return */ public st ...