P3719 [AHOI2017初中组]rexp

没有什么算法的题做起来真不适应,这道题深深讽刺了我想用栈维护匹配括号个数的想法;

递归解决就行了;

时刻注意函数返回值是什么,边界条件是什么;

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5+;
typedef double dd;
typedef long long ll;
ll n;
ll a[maxn];
ll id[maxn]; ll f[maxn],g[maxn]; ll b1[maxn],b2[maxn]; int len; ll query_front(int x)
{
ll ans=;
for(;x;x-=x&(-x)) ans=max(b1[x],ans);
return ans;
} ll query_back(int x)
{
ll ans=;
for(;x;x-=x&(-x)) ans=max(b2[x],ans);
return ans;
} void add_front(int x,ll y)
{
for(;x<=len;x+=x&(-x)) b1[x]=max(b1[x],y);
} void add_back(int x,ll y)
{
for(;x<=len;x+=x&(-x)) b2[x]=max(b2[x],y);
} dd ans; int qw[maxn]; int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
id[i]=a[i];
}
sort(id+,id+n+);
len=unique(id+,id+n+)-id-;
for(int i=;i<=n;i++) qw[i]=lower_bound(id+,id+len+,a[i])-id;
for(int i=;i<=n;i++)
{
f[i]=query_front(qw[i]-)+a[i];
g[n-i+]=query_back(qw[n-i+]-)+a[n-i+];
add_front(qw[i],f[i]);
add_back(qw[n-i+],g[n-i+]);
}
for(int i=;i<=n;i++)
{
ans=max(ans,max((dd)f[i],((dd)f[i]+(dd)g[i]-(dd)a[i])/2.0));
}
printf("%.3lf",ans);
return ;
}

P3719 [AHOI2017初中组]rexp——递归模拟的更多相关文章

  1. P3719 [AHOI2017初中组]rexp

    P3719 [AHOI2017初中组]rexp一开始想的是类似计算式子的值的东西,用栈.然后发现处理最大值很麻烦,因为处理的很像子过程,所以考虑递归来做.碰到'('就递归一次,碰到'|'就取最大值再递 ...

  2. 洛谷P3719 [AHOI2017初中组]rexp

    洛谷P3719 [AHOI2017初中组]rexp 题目背景 以下为不影响题意的简化版题目. 题目描述 给出一个由(,),|,a组成的序列,求化简后有多少个a. 化简规则: 1.形如aa...a|aa ...

  3. luogu3720 [AHOI2017初中组]guide[最短路]

    初中组..唉 题意有点误解,当前在x点走一步,gps产生代价条件是沿非x到n的最短路走. 直接倒着跑两遍$i\sim n$的两种最短路,然后枚举每条边走的时候是否可以在两种最短路上,不是就产生1个代价 ...

  4. poj 1472(递归模拟)

    题意:就是让你求出时间复杂度. 分析:由于指数最多为10次方,所以可以想到用一个数组保存各个指数的系数,具体看代码实现吧! 代码实现: #include<cstdio> #include& ...

  5. P1010 幂次方 递归模拟

    题目描述 任何一个正整数都可以用22的幂次方表示.例如 137=2^7+2^3+2^0137=27+23+20 同时约定方次用括号来表示,即a^bab 可表示为a(b)a(b). 由此可知,13713 ...

  6. P2475 [SCOI2008]斜堆(递归模拟)

    思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...

  7. 题解 P3717 【[AHOI2017初中组]cover】

    题目链接 本题的大致思路就是搜索. 将矩阵初始化成false.先把灯塔标记.在搜一遍灯塔能照到的点并标记.最后搜一遍找被灯塔标记的个数. 详细解释见题解. 题解走起. #include<bits ...

  8. P3717 [AHOI2017初中组]cover

    题目背景 以下为不影响题意的简化版题目. 题目描述 一个n*n的网格图上有m个探测器,每个探测器有个探测半径r,问这n*n个点中有多少个点能被探测到. 输入输出格式 输入格式: 第一行3个整数n,m, ...

  9. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

随机推荐

  1. java之hibernate之crud

    这篇文章主要讲解: 1>.对Hibernate使用的一些简单封装: · 2>.在单元测试中,使用Hibernate的封装的工具进行增删改查的测试 1.目录结构展示 2.代码展示 2.0 配 ...

  2. tcp协议close_wait与time_wait状态含义

    题目描述 1.什么是三次握手,四次挥手?为什么分别要三次与四次? 2.tcp协议中,close_wait与time_wait状态分别代表什么含义,为什么要设计这两种状态,解决了什么问题? 3.time ...

  3. 深入理解JVM(六) -- GC执行原则和方案

    上篇文章中,我们了解了Java虚拟机垃圾回收的思路和策略,这篇文章我们将了解Java是如何实现高效的回收算法的. 我们需要了解,内存回收必须要保证“一致性”,意思就是在执行GC分析的时候,系统看起来要 ...

  4. DDL 操作表结构

    DDL 操作表结构:CRUD 一.C(create)创建 1.创建表 create table 表名( 列名1 数据类型1, 列名2 数据类型2, 列名3 数据类型3, ... 列名n 数据类型n ) ...

  5. 信号的有效值(RMS)估计

    % Root Mean Square Value function [retval] = rms1(sig) N = 20; for k = 1 : length(sig)/N - 1 sig_sum ...

  6. array_reduce() 与 array_map()

    相似部分: 二者同为 处理数组函数,可遍历 数组中的每一个元素, 对其通过 function callback(){} 处理. 不同处: 参数: array_reduce( array, callba ...

  7. [ipsec][strongswan] VirtualPN隧道网络加速FEC(forward error correction)

    引用 跟一个网友就有关IPsec的网络加速以及降低延迟等问题进行了一些讨论,并总结了一写粗浅的看法. 因为FEC的资料并不多,所以分享出来,希望能被有需要的人看见:) 先说一下FEC. 我们使用ips ...

  8. 使用Cloudera Manager搭建MapReduce集群及MapReduce HA

    使用Cloudera Manager搭建MapReduce集群及MapReduce HA 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.通过CM部署MapReduce On ...

  9. 基于STM8的IIC协议--实例篇--时钟模块(DS3231)读取

    1. 综述 由上篇博客可知道IIC协议如何用代码实现,本篇博客就不涉及协议内容,只讲解如何使用. 本次的实验传感为:DS3231(时钟模块),对于时钟模块的具体信息我也就不多介绍,大家可以自行度娘,具 ...

  10. 2013.4.24 - KDD第六天

    今天早上,中秋给我发了一个压缩包,里面有战德臣的课件,昨天我说我SQL没学好,他说给我发战徳臣课件,然后说我SQL不会的话可以看这个,还有两篇文 章<LDA数学八卦>以及<A Not ...