题面

令d(n)d(n)d(n)表示nnn的约数之和求

∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij)

题目分析

先给结论

d(ij)=∑x∣i∑y∣jxj/y[(x,y)==1]\large d(ij)=\sum_{x|i}\sum_{y|j}xj/y[(x,y)==1]d(ij)=x∣i∑​y∣j∑​xj/y[(x,y)==1]

可以通过 传送门 类似的证明方法证明

拖更…

AC code
#include <cstdio>
#include <map>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 1e6 + 1, mod = 1e9 + 7;
int Prime[MAXN/10], Cnt, mu[MAXN];
bool IsnotPrime[MAXN];
inline void init(int n)
{
mu[1] = 1;
for(int i = 2; i <= n; ++i)
{
if(!IsnotPrime[i])
Prime[++Cnt] = i, mu[i] = -1;
for(int j = 1, v; j <= Cnt && i * Prime[j] <= n; ++j)
{
v = i * Prime[j];
IsnotPrime[v] = 1;
if(i % Prime[j] == 0) { mu[v] = 0; break; }
mu[v] = -mu[i];
}
}
for(int i = 1; i <= n; ++i)
mu[i] = (mu[i-1] + i*mu[i]%mod) % mod;
}
map<int, int>s; inline int f(int i, int j) //i+(i+1)+...+j
{
return ((LL)(i+j) * (j-i+1)/2) % mod;
} inline int sum(int n) //mu(1)1+mu(2)2+...+mu(n)n
{
if(n < MAXN) return mu[n];
if(s.count(n)) return s[n];
int ret = 1;
for(int i = 2, j; i <= n; i=j+1)
{
j = n/(n/i);
ret = (ret - (LL)f(i,j) * sum(n/i) % mod) % mod;
}
return s[n]=ret;
} inline int calc(int n)
{
int ret = 0, k;
for(int i = 1, j; i <= n; i=j+1)
{
j = n/(n/i); k = n/i;
ret = (ret + (LL)(j-i+1) * (((LL)k*(k+1)/2)%mod) % mod) % mod;
}
return ret;
} inline int solve(int n)
{
int ret = 0, last = 0, tmp, tmp2;
for(int i = 1, j; i <= n; i=j+1)
{
tmp = sum(j = n/(n/i)), tmp2 = calc(n/i), tmp2 = (LL)tmp2 * tmp2 % mod;
ret = (ret + (LL)(tmp - last) * tmp2 % mod) % mod;
last = tmp;
}
return ret;
} int main ()
{
int n; init(MAXN-1);
scanf("%d", &n);
printf("%d\n", (solve(n)+mod)%mod);
}

[51Nod 1220] - 约数之和 (杜教筛)的更多相关文章

  1. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  2. 51nod 1220 约数之和【莫比乌斯反演+杜教筛】

    首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...

  3. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  4. 51Nod.1244.莫比乌斯函数之和(杜教筛)

    题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; in ...

  5. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  6. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  7. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  8. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

  9. 51nod1244 莫比乌斯函数之和 杜教筛

    虽然都写了,过也过了,还是觉得杜教筛的复杂度好玄学 设f*g=h,∑f=S, 则∑h=∑f(i)S(n/i下取整) 把i=1时单独拿出来,得到 S(n)=(∑h-∑2->n f(i)S(n/i下 ...

随机推荐

  1. JAVA如何实现中式排名和美式排名

    根据公司需求,需要编写中式和美式排名算法,根据具体业务编写的,代码如下,看不懂留言,欢迎探讨,求高手指教更高效稳定的方法.private static int[] datas = {9,9,10,10 ...

  2. pytest_01-环境准备与入门

    前言 首先说下为什么要学pytest,在此之前相信大家已经掌握了python里面的unittest单元测试框架,那再学一个框架肯定是需要学习时间成本的. 刚开始我的内心是拒绝的,我想我用unittes ...

  3. 基于vue的分页插件

    相信大家用过很多jquery的分页插件,那这次就用一用基于vue的分页插件. 这里的环境用的是springboot 首先要引入pagehelper的jar文件,版本是1.2.3,配置文件也需要配置一下 ...

  4. 对于解决VS2015启动界面卡在白屏的处理方法

    有时候会遇到这种情况,仅供参考 找到devenv.exe所在文件夹,按住Shift,在空白地方右键,选择“在此处打开命令窗口”,在打开的窗口中输入devenv /ResetSettings 重新设置V ...

  5. loj#10067 构造完全图(最小生成树)

    题目 loj#10067 构造完全图 解析 和kruscal类似,我们要构造一个完全图,考虑往这颗最小生成树里加边 我们先把每一条边存下来, 把两个端点分别放在不同的集合内,记录每个集合的大小,然后做 ...

  6. webpack+vue-cil跨域配置接口地址代理

    在vue项目开发的时候,接口联调的时候一般都是同域名下,且不存在跨域的情况下进行接口联调,但是当我们现在使用vue-cli进行项目打包的时候,我们在本地启动服务器后,比如本地开发服务下是 http:/ ...

  7. 实战AudioToolbox--在iOS平台上播放音频

    上午看了关于AudioToolbox.framework相关的资料,结合网上的资料对AudioToolbox的基本使用有了整体上的认识,上一篇文章 笔谈AudioToolbox(一) 中提到使用Aud ...

  8. Spring 实例化Bean的3种方式

    要使用Spring中的Bean,需要先创建这个Bean的实例. 实例化Bean有3种方式: 构造器方式 静态工厂方式 实例工厂方式 构造器方式 构造器方式是最常用的.在Bean中写构造函数,然后在配置 ...

  9. SQL Text Literals 文本

    Text Literals 文本 Use the text literal notation to specify values whenever string appears in the synt ...

  10. GROUP BY HAVING,ORDER BY

    --HAVING语句与GROUP BY语句联合使用,用来过滤由GROUP BY语句返回的记录集. --并且HAVING语句的存在弥补了WHERE关键字不能与聚合函数联合使用的不足. ), SUM([C ...