题面

令d(n)d(n)d(n)表示nnn的约数之和求

∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij)

题目分析

先给结论

d(ij)=∑x∣i∑y∣jxj/y[(x,y)==1]\large d(ij)=\sum_{x|i}\sum_{y|j}xj/y[(x,y)==1]d(ij)=x∣i∑​y∣j∑​xj/y[(x,y)==1]

可以通过 传送门 类似的证明方法证明

拖更…

AC code
#include <cstdio>
#include <map>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 1e6 + 1, mod = 1e9 + 7;
int Prime[MAXN/10], Cnt, mu[MAXN];
bool IsnotPrime[MAXN];
inline void init(int n)
{
mu[1] = 1;
for(int i = 2; i <= n; ++i)
{
if(!IsnotPrime[i])
Prime[++Cnt] = i, mu[i] = -1;
for(int j = 1, v; j <= Cnt && i * Prime[j] <= n; ++j)
{
v = i * Prime[j];
IsnotPrime[v] = 1;
if(i % Prime[j] == 0) { mu[v] = 0; break; }
mu[v] = -mu[i];
}
}
for(int i = 1; i <= n; ++i)
mu[i] = (mu[i-1] + i*mu[i]%mod) % mod;
}
map<int, int>s; inline int f(int i, int j) //i+(i+1)+...+j
{
return ((LL)(i+j) * (j-i+1)/2) % mod;
} inline int sum(int n) //mu(1)1+mu(2)2+...+mu(n)n
{
if(n < MAXN) return mu[n];
if(s.count(n)) return s[n];
int ret = 1;
for(int i = 2, j; i <= n; i=j+1)
{
j = n/(n/i);
ret = (ret - (LL)f(i,j) * sum(n/i) % mod) % mod;
}
return s[n]=ret;
} inline int calc(int n)
{
int ret = 0, k;
for(int i = 1, j; i <= n; i=j+1)
{
j = n/(n/i); k = n/i;
ret = (ret + (LL)(j-i+1) * (((LL)k*(k+1)/2)%mod) % mod) % mod;
}
return ret;
} inline int solve(int n)
{
int ret = 0, last = 0, tmp, tmp2;
for(int i = 1, j; i <= n; i=j+1)
{
tmp = sum(j = n/(n/i)), tmp2 = calc(n/i), tmp2 = (LL)tmp2 * tmp2 % mod;
ret = (ret + (LL)(tmp - last) * tmp2 % mod) % mod;
last = tmp;
}
return ret;
} int main ()
{
int n; init(MAXN-1);
scanf("%d", &n);
printf("%d\n", (solve(n)+mod)%mod);
}

[51Nod 1220] - 约数之和 (杜教筛)的更多相关文章

  1. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  2. 51nod 1220 约数之和【莫比乌斯反演+杜教筛】

    首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...

  3. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  4. 51Nod.1244.莫比乌斯函数之和(杜教筛)

    题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; in ...

  5. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  6. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  7. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  8. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

  9. 51nod1244 莫比乌斯函数之和 杜教筛

    虽然都写了,过也过了,还是觉得杜教筛的复杂度好玄学 设f*g=h,∑f=S, 则∑h=∑f(i)S(n/i下取整) 把i=1时单独拿出来,得到 S(n)=(∑h-∑2->n f(i)S(n/i下 ...

随机推荐

  1. Python pip版本升级

    pip版本升级命令: python -m pip install --upgrade pip 如果报错代码如下: (venv) C:\Users\ssdy\PycharmProjects\untitl ...

  2. STVD使用printf输出数据错误

    使用STM8L052输出调试信息 重定向put char #include "stdio.h" //必不可缺少 char putchar (char c) { /* Write a ...

  3. Android Studio代码错误提示无效(not available in Power Save mode)

    针对一位博友提的问题,我这边写出来,估计还是很多人会碰到这个问题,但是不知道如何解决的. 就是在设置了代码自动提示功能后,发现不生效的,如何设置代码自动提示请戳这:Android Studio如何设置 ...

  4. 【题解】Luogu P5342 [TJOI2019]甲苯先生的线段树

    原题传送门 挺有趣的一道题 \(c=1\),暴力求出点权和n即可 \(c=2\),先像\(c=1\)一样暴力求出点权和n,考虑有多少路径点权和也为n 考虑设x为路径的转折点,\(L\)为\(x\)向左 ...

  5. Compact Middle Packages

    idea工具进行Java开发,在项目视图,默认是将package层级以简洁显示的,如下图: 但有时,我们希望不要使用这种模式,比如:某个父包下,有一个子包,想在父包下,增加一个包,可是来时增加在子包下 ...

  6. java之spring mvc之页面跳转

    1. 如果返回值为ModelAndView,在处理方法中,返回null时,默认跳转的视图名称为请求名.跳转结果会根据视图解析器来跳转. @RequestMapping("/hello.do& ...

  7. Python进阶----UDP协议使用socket通信,socketserver模块实现并发

    Python进阶----UDP协议使用socket通信,socketserver模块实现并发 一丶基于UDP协议的socket 实现UDP协议传输数据 代码如下:

  8. 英伟达 cuda 开发套件下载

    下载地址 https://developer.nvidia.com/cuda-toolkit 安装比较简单,就不多说了.

  9. springCloud学习4(Zuul服务路由)

    镇博图 springcloud 总集:https://www.tapme.top/blog/detail/2019-02-28-11-33 本篇中 Zuul 版本为 1.x,目前最新的是 2.x,二者 ...

  10. HTML学习摘要1

    在http://www.w3school.com.cn/ 学习前端知识,利用暑假,自主学习以拓展知识面 DAY 1 HTML 不是一种编程语言,而是一种标记语言 (markup language) 标 ...