链接:https://ac.nowcoder.com/acm/contest/992/D

$a_{i}=\dfrac {3a_{i-1}-a_{i-2}}{2}+i+1$

移项再化一下

$a_{i}-a_{i-1}-2i=\dfrac {1}{2}\left[ a_{i-1}-a_{i-2}-2\left( i-1\right) \right]$

令$t_{i}=t_{i}=a_{i}-a_{i-1}-2i$

由于$a_{0}=0$ $a_{1}=2$ 所以$t_{1}=0$

所以$t_{i}=0$ $(i\geq 1)$

即$a_{i}=a_{i-1}+2i$

$\left\{\begin{matrix}
 & a_{i}=a_{i-1}+2i& \\
 & \cdots & \\
 & a_{1}=a_{0}+2\times 1 &
\end{matrix}\right.$

$i$个式子相加得到

$S_{i}=S_{i-1}+i\left( i+1\right)$

所以$a_{i}=i^{2} + i$

也可以打表,但我感觉打表会不会更难看出来?

现在可以先把1~$n$的总和先求出来,再减去与$m$不互质的和就是答案了。

预处理出$m$的素因子,然后枚举一下所有组合的情况(由于$m$随机生成,素因子个数不会很多)

每一个素因子乘积的组合$k$有$\lfloor \dfrac {n}{k}\rfloor$个

然后容斥一下

$S_{n}=\dfrac {n\cdot \left( n+1\right) \left( 2n+1\right) }{6}$

$k^{2}+\left( 2k\right) ^{2}+\ldots +\left( \lfloor \dfrac {n}{k}\rfloor k\right) ^{2}$

把$k^{2}$提出来就又是一个平方和了

1~$i$的和同理

#include <bits/stdc++.h>
#define ll long long
using namespace std; const ll MOD = 1E9 + ;
const ll inv2 = ;
const ll inv6 = ; ll n, m;
ll fac[]; inline ll sqr(ll x) {
return (x % MOD * (x + ) % MOD * ( * x + ) % MOD * inv6) % MOD;
} inline ll f(ll x) {
return ((x + ) * x % MOD * inv2 % MOD) % MOD;
} inline ll cal(ll temp) {
ll k = n / temp;
return (sqr(k) * temp % MOD * temp % MOD + f(k) * temp % MOD) % MOD;
} int main() {
while (~scanf("%lld%lld", &n, &m)) {
int cnt = ;
for (int i = ; i * i <= m; i++) {
if (m % i == ) {
fac[cnt++] = i;
while (m % i == ) m /= i;
}
}
if (m != ) fac[cnt++] = m;
ll ans = cal();
ll ans0 = ;
for (int i = ; i < ( << cnt); i++) {
ll temp = ;
int sum = ;
for (int j = ; j < cnt; j++) {
if (i & ( << j)) {
sum++;
temp *= fac[j];
}
}
if (sum & ) {
ans0 = (ans0 + cal(temp)) % MOD;
} else {
ans0 = (ans0 - cal(temp) + MOD) % MOD;
}
}
ans = (ans - ans0 + MOD) % MOD;
printf("%lld\n", ans);
}
return ;
}

吉首大学2019年程序设计竞赛(重现赛)D - 数列求和(嘤雄难度)的更多相关文章

  1. 吉首大学2019年程序设计竞赛(重现赛)- A SARS病毒 (矩阵,欧拉降幂)

    题目链接:https://ac.nowcoder.com/acm/contest/992/A 题意:求出长度为n的字符串个数,字符串由A.C.G.T组成,其中A和C必须成对出现. 思路:我们规定:   ...

  2. 吉首大学2019年程序设计竞赛(重现赛)-K(线段树)

    题目链接:https://ac.nowcoder.com/acm/contest/992/K 题意:给一个大小为1e5的数组,由0 1组成,有两种操作,包括区间修改,将一段区间内的0换成1,1换成0; ...

  3. 吉首大学2019年程序设计竞赛(重现赛)-J(树形DP)

    题目链接:https://ac.nowcoder.com/acm/contest/992/J 题意:题意很清晰,就是求任意两点距离的和,结果对1e9+7取模. 思路:裸的树形DP题,一条边的贡献值=这 ...

  4. 吉首大学2019年程序设计竞赛(重现赛)I 滑稽树上滑稽果 (莫队+逆元打表)

    链接:https://ac.nowcoder.com/acm/contest/992/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 32768K,其他语言65536K  ...

  5. 吉首大学2019年程序设计竞赛(重现赛) J 滑稽树下你和我 (递归)

    链接:https://ac.nowcoder.com/acm/contest/992/J来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K ...

  6. 吉首大学2019年程序设计竞赛(重现赛) B 干物妹小埋

    链接:https://ac.nowcoder.com/acm/contest/992/B来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K ...

  7. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 G - 彩虹岛套娃

    题目描述 俄罗斯套娃是俄罗斯特产的木制玩具,一般由多个一样图案的空心木娃娃一个套一个组成,最多可达十多个,通常为圆柱形,底部平坦可以直立.颜色有红色,蓝色,绿色,紫色等.最普通的图案是一个穿着俄罗斯民 ...

  8. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 H - 圣诞节糖果

    题目描述 圣诞节临近,彩虹岛的黑心商人

  9. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 F - 打铁的箱子

    题目描述 作为彩虹岛上最擅长打铁的人,

随机推荐

  1. SQL Server 2019 新函数Approx_Count_Distinct

    2019年11月4日微软发布了2019正式版,该版本有着比以往更多强大的新功能和性能上的优势,可参阅SQL Server 2019 新版本. SQL Server 2019具有一组丰富的增强功能和新功 ...

  2. 材质(Material)和几何体(Geometry)

    1.    材质 一个材质结合一个几何体可以组成一个mesh对象.材质就像物体的皮肤,决定了几何体的外表.例如:皮肤定义了一个几何体看起来是否像金属.透明与否,或者显示为线框. 基本的材质如下: 1. ...

  3. shoshana-技术文集

    20190422 全球最厉害的 14 位程序员,请收下我的膝     20190423 观察者模式(Observer)和发布(Publish/订阅模式(Subscribe)       2019042 ...

  4. 2019-6-28笔记总结-编程语言发展史和python安装

    一.编程语言的发展史 1.机器语言(就是010101的二进制数,直接用二进制跟计算机直接沟通交流,直接操作硬件) 优点:计算机能够直接读懂,速度快 缺点:开发效率极低 2.汇编语言(用简单的英文标签来 ...

  5. golang 之 flag

    针对官网对flag 的定义解释一堆,对与我来说看了许久只想获取它的用法时,特意去整理一下.能快速使用并掌握它. 查看flag源码大致定义几下几种格式 //定义一个字符串的变量 type string ...

  6. ELK学习笔记之logstash配置多入多出并互相隔离

    0x00 概述 需求:需要利用同一logstash进程采集不同日志,输出到es的不同index,各输入输出隔离: 主要需要解决如下两个问题: 0x01 如何加载多个配置文件 普通启动方式: nohup ...

  7. 详解java动态代理机制以及使用场景

    详解java动态代理机制以及使用场景 https://blog.csdn.net/u011784767/article/details/78281384 深入理解java动态代理的实现机制 https ...

  8. 实战Go内存泄露【转】

    最近解决了我们项目中的一个内存泄露问题,事实再次证明pprof是一个好工具,但掌握好工具的正确用法,才能发挥好工具的威力,不然就算你手里有屠龙刀,也成不了天下第一,本文就是带你用pprof定位内存泄露 ...

  9. pyspark学习笔记

    记录一些pyspark常用的用法,用到的就会加进来 pyspark指定分区个数 通过spark指定最终存储文件的个数,以解决例如小文件的问题,比hive方便,直观 有两种方法,repartition, ...

  10. NMS的实现代码详解

    NMS代码说明(来自Fast-RCNN) 个人觉得NMS包含很多框,其坐标为(x1,y1,x2,y2),每个框对应了一个score,我们将按照score得分降序,并将第一个最高的score的框(我们叫 ...