链接:https://ac.nowcoder.com/acm/contest/992/D

$a_{i}=\dfrac {3a_{i-1}-a_{i-2}}{2}+i+1$

移项再化一下

$a_{i}-a_{i-1}-2i=\dfrac {1}{2}\left[ a_{i-1}-a_{i-2}-2\left( i-1\right) \right]$

令$t_{i}=t_{i}=a_{i}-a_{i-1}-2i$

由于$a_{0}=0$ $a_{1}=2$ 所以$t_{1}=0$

所以$t_{i}=0$ $(i\geq 1)$

即$a_{i}=a_{i-1}+2i$

$\left\{\begin{matrix}
 & a_{i}=a_{i-1}+2i& \\
 & \cdots & \\
 & a_{1}=a_{0}+2\times 1 &
\end{matrix}\right.$

$i$个式子相加得到

$S_{i}=S_{i-1}+i\left( i+1\right)$

所以$a_{i}=i^{2} + i$

也可以打表,但我感觉打表会不会更难看出来?

现在可以先把1~$n$的总和先求出来,再减去与$m$不互质的和就是答案了。

预处理出$m$的素因子,然后枚举一下所有组合的情况(由于$m$随机生成,素因子个数不会很多)

每一个素因子乘积的组合$k$有$\lfloor \dfrac {n}{k}\rfloor$个

然后容斥一下

$S_{n}=\dfrac {n\cdot \left( n+1\right) \left( 2n+1\right) }{6}$

$k^{2}+\left( 2k\right) ^{2}+\ldots +\left( \lfloor \dfrac {n}{k}\rfloor k\right) ^{2}$

把$k^{2}$提出来就又是一个平方和了

1~$i$的和同理

#include <bits/stdc++.h>
#define ll long long
using namespace std; const ll MOD = 1E9 + ;
const ll inv2 = ;
const ll inv6 = ; ll n, m;
ll fac[]; inline ll sqr(ll x) {
return (x % MOD * (x + ) % MOD * ( * x + ) % MOD * inv6) % MOD;
} inline ll f(ll x) {
return ((x + ) * x % MOD * inv2 % MOD) % MOD;
} inline ll cal(ll temp) {
ll k = n / temp;
return (sqr(k) * temp % MOD * temp % MOD + f(k) * temp % MOD) % MOD;
} int main() {
while (~scanf("%lld%lld", &n, &m)) {
int cnt = ;
for (int i = ; i * i <= m; i++) {
if (m % i == ) {
fac[cnt++] = i;
while (m % i == ) m /= i;
}
}
if (m != ) fac[cnt++] = m;
ll ans = cal();
ll ans0 = ;
for (int i = ; i < ( << cnt); i++) {
ll temp = ;
int sum = ;
for (int j = ; j < cnt; j++) {
if (i & ( << j)) {
sum++;
temp *= fac[j];
}
}
if (sum & ) {
ans0 = (ans0 + cal(temp)) % MOD;
} else {
ans0 = (ans0 - cal(temp) + MOD) % MOD;
}
}
ans = (ans - ans0 + MOD) % MOD;
printf("%lld\n", ans);
}
return ;
}

吉首大学2019年程序设计竞赛(重现赛)D - 数列求和(嘤雄难度)的更多相关文章

  1. 吉首大学2019年程序设计竞赛(重现赛)- A SARS病毒 (矩阵,欧拉降幂)

    题目链接:https://ac.nowcoder.com/acm/contest/992/A 题意:求出长度为n的字符串个数,字符串由A.C.G.T组成,其中A和C必须成对出现. 思路:我们规定:   ...

  2. 吉首大学2019年程序设计竞赛(重现赛)-K(线段树)

    题目链接:https://ac.nowcoder.com/acm/contest/992/K 题意:给一个大小为1e5的数组,由0 1组成,有两种操作,包括区间修改,将一段区间内的0换成1,1换成0; ...

  3. 吉首大学2019年程序设计竞赛(重现赛)-J(树形DP)

    题目链接:https://ac.nowcoder.com/acm/contest/992/J 题意:题意很清晰,就是求任意两点距离的和,结果对1e9+7取模. 思路:裸的树形DP题,一条边的贡献值=这 ...

  4. 吉首大学2019年程序设计竞赛(重现赛)I 滑稽树上滑稽果 (莫队+逆元打表)

    链接:https://ac.nowcoder.com/acm/contest/992/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 32768K,其他语言65536K  ...

  5. 吉首大学2019年程序设计竞赛(重现赛) J 滑稽树下你和我 (递归)

    链接:https://ac.nowcoder.com/acm/contest/992/J来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K ...

  6. 吉首大学2019年程序设计竞赛(重现赛) B 干物妹小埋

    链接:https://ac.nowcoder.com/acm/contest/992/B来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K ...

  7. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 G - 彩虹岛套娃

    题目描述 俄罗斯套娃是俄罗斯特产的木制玩具,一般由多个一样图案的空心木娃娃一个套一个组成,最多可达十多个,通常为圆柱形,底部平坦可以直立.颜色有红色,蓝色,绿色,紫色等.最普通的图案是一个穿着俄罗斯民 ...

  8. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 H - 圣诞节糖果

    题目描述 圣诞节临近,彩虹岛的黑心商人

  9. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 F - 打铁的箱子

    题目描述 作为彩虹岛上最擅长打铁的人,

随机推荐

  1. springboot2.1.7整合mybati3.5.2与mysql8.0.13

    springboot2.x已经发布一段时间,博主在这里使用springboot2.1.7整合mybatis3.5.2,使用的数据库为mysql8.0.13 1. 导入依赖 <!--mysql-- ...

  2. Map 集合按字母排序方法

    @Testpublic void testMapSort() { Map<String, String> map = new HashMap<>(); map.put(&quo ...

  3. redis三种集群策略

    主从复制 主数据库可以进行读写操作,当读写操作导致数据变化时会自动将数据同步给从数据库 从数据库一般都是只读的,并且接收主数据库同步过来的数据 一个master可以拥有多个slave,但是一个slav ...

  4. Spring-Cloud之Ribbon负载均衡-3

    一.负载均衡是指将负载分摊到多个执行单元上,常见的负载均衡有两种方式.一种是独立进程单元,通过负载均衡策略,将请求转发到不同的执行单元上,例如 Ngnix .另一种是将负载均衡逻辑以代码的形式封装到服 ...

  5. java基础 Arrays

    package cn.mantishell.day08.demo04; import java.util.Arrays; /** * java.util.Arrays是一个与数组相关的工具类,里面提供 ...

  6. volatile-最轻量级的并发实现及其内存语义

    原文连接:(http://www.studyshare.cn/blog/details/1163/0 ) 一.volatile定义 volatile是java并发编程中修饰类的成员变量.成员属性或者对 ...

  7. 2019 2345网址导航java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.2345网址导航等公司offer,岗位是Java后端开发,因为发展原因最终选择去了2345网址导航,入职一年时 ...

  8. win10下jupyter修改默认路径的办法

    查了很多资料,发现都不管用,最后亲测找到一种方法. 实现的方法就是修改快捷方式标签的目标栏,如下图: 后面有一个%USERPROFILE% 将%USERPROFILE%改成你要的路径就可以了 然后应用 ...

  9. Linux:检查当前运行级别的五种方法

    运行级就是Linux操作系统当前正在运行的功能级别.存在七个运行级别,编号从0到6.系统可以引导到任何给定的运行级别.运行级别由数字标识. 每个运行级别指定不同的系统配置,并允许访问不同的进程组合.默 ...

  10. sdcard不可执行.

    Possibly you placed it on your sdcard -- which is mounted with the noexec flag. You either need to m ...