HDU 6595 Everything Is Generated In Equal Probability (期望dp,线性推导)
Everything Is Generated In Equal Probability
\[
Time Limit: 1000 ms\quad Memory Limit: 131072 kB
\]
题意
给出一个 \(N\),以相等的概率生成 \(n\) 且 \(n \in [1, N]\),在以相等的概率生成长度为 \(n\) 的数组,最后将生成的数组扔到 \(CALCULATE\) 函数并返回一个数,问这个数的期望。
思路
先解释一下样例是怎么得来的。
令 \(dp[array]\) 表示数组 \(array\) 扔到函数里得到的期望,\(pair[array]\) 表示数组 \(array\) 中逆序对的数量。
则
\[
dp[array] = \frac{1}{A_{len(array)}^{len(array)}} \sum\left(dp[subsequence] + pair[subsequence]\right) \\
ans = \frac{1}{N}\sum_{n=1}^{N} \frac{1}{A_n^n}\sum_{len(array)=n}\left(dp[array] + pair[array]\right)
\]
\(N=2\):
- \(\frac{1}{2}\) 概率得到 \(n=1\),只有一个 \(array=[1]\),显然 \(dp[ [1] ] = 0\)
- \(\frac{1}{2}\) 概率得到 \(n=2\),此时有 \(\frac{1}{2}\) 生成 \(array=[1,2]\),\(\frac{1}{2}\) 生成 \(array=[2,1]\),则
\[
\begin{aligned}
&dp[[1,2]] = \frac{1}{4}((dp[[1]]+0) + (dp[[2]]+0) + (dp[[1,2]]+0) + (dp[[\emptyset]]+0)) \\
\implies&dp[[1,2]] = 0\\
&dp[[2,1]] = \frac{1}{4}((dp[[1]]+0) + (dp[[2]]+0) + (dp[[2,1]]+1) + (dp[[\emptyset]]+0)) \\
\implies&dp[[2,1]] = \frac{1}{3}\\
&\emptyset 表示空集
\end{aligned}
\]
所以当 \(N=2\) 时的期望就是
\[
ans = \frac{1}{2}\left((dp[[1]]+0) + \frac{1}{2}((dp[[1,2]]+0) + (dp[[2,1]]+1))\right)= \frac{1}{3}
\]
\(N=3\) 同理,可以自行计算并算出每个序列的 \(dp\) 值。
计算 \(N=3\) 后,我们发现 \(dp[[1,2,3]] = \frac{0}{3}, dp[[2,1,3]] = \frac{1}{3}, dp[[2,3,1]]=\frac{2}{3},dp[[3,2,1]]=\frac{3}{3}\),在加上之前算出的 \(dp[[1,2]] = \frac{0}{3}\),\(dp[[2,1]] = \frac{1}{3}\),我们可以猜想 \(dp[array] = \frac{pari[array]}{3}\),可以继续计算 \(n=4\) 的情况,同样满足猜想。
回到最初始的式子
\[
\begin{aligned}
ans &= \frac{1}{N}\sum_{n=1}^{N} \frac{1}{A_n^n}\sum_{len(array)=n}\left(dp[array] + pair[array]\right) \\
&= \frac{1}{N}\sum_{n=1}^{N} \frac{1}{A_n^n} \left(\frac{4\sum_{len(array)=n} pair[array]}{3}\right)
\end{aligned}
\]
令 \(f[i]\) 表示 \(\sum_{len(array)=i} pair[array]\),只要计算出这个,最后的答案就可以 \(O\left(N\right)\) 得到。
对于一个长度为 \(n\) 的序列,我们假设把这个序列的最后一个数字拿掉,前面的 \(n-1\) 个数的 \(pair\) 数其实就可以看成 \(f[n-1]\) 的贡献,一共有 \(n\) 个数字可以拿掉,所以前 \(n-1\) 个数字这部分的总贡献就是\(n*f[n-1]\)。
现在把最后一个数字加进来,当加入的数字是 \(i\) 时,和其他 \(n-1\) 个数字会产生 \(\left(n-i\right)\) 对逆序对,剩余的 \(n-1\) 个数都在前面,可以随便排列,所以它的贡献就是 \(A_{n-1}^{n-1}\left(n-i\right)\),则最后一个数字这部分的总贡献就是 \(\sum_{i=1}^{n} A_{n-1}^{n-1}\left(n-i\right) = A_{n-1}^{n-1} \sum_{i=1}^{n-1}i\)。
现在就可以得到 \(f[i]\) 的线性递推式
\[
f[n] = n*f[n-1]+A_{n-1}^{n-1}\sum_{i=1}^{n-1}i
\]
我们队最后把 \(f[i]\) 扔到 \(oeis\) 里面去....发现居然有 \(O\left(1\right)\) 公式 \(\frac{n!n(n-1)}{4}\),打扰了....
最后只要把 \(f[i]\) 打表预处理出来,最后的答案就可以进一步化简
\[
ans = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{A_n^n}\frac{4f[n]}{3}
\]
最后发现网上说 \(ans\) 居然又有 \(O\left(1\right)\) 公式 \(\frac{N^2-1}{9}\)
HDU 6595 Everything Is Generated In Equal Probability (期望dp,线性推导)的更多相关文章
- HDU-多校2-Everything Is Generated In Equal Probability(公式+逆元)
Problem Description One day, Y_UME got an integer N and an interesting program which is shown below: ...
- hdu多校第二场 1005 (hdu6595) Everything Is Generated In Equal Probability
题意: 给定一个N,随机从[1,N]里产生一个n,然后随机产生一个n个数的全排列,求出n的逆序数对的数量,加到cnt里,然后随机地取出这个全排列中的一个非连续子序列(注意这个子序列可以是原序列),再求 ...
- 【HDOJ6595】Everything Is Generated In Equal Probability(期望DP)
题意:给定一个N,随机从[1,N]里产生一个n, 然后随机产生一个n个数的全排列,求出n的逆序数对的数量并累加ans, 然后随机地取出这个全排列中的一个子序列,重复这个过程,直到为空,求ans在模99 ...
- ACM的探索之Everything is Generated In Equal Probability! 后序补充丫!
Problem Desciption: 百度翻译后的汉化: 参见博客:https://www.cnblogs.com/zxcoder/p/11253099.html https://blog.csdn ...
- ACM的探索之Everything Is Generated In Equal Probability(这真的是很有趣的话语丫!)
---------------------------------------步履不停,奋勇前进! ------------------------难度真的是蛮大丫!后序补充!
- [hdu6595]Everything Is Generated In Equal Probability
计算一对逆序对的贡献,即在n个数期望要删多少步才能删掉其中的两个数,设f(n)表示此时的期望,则有方程$f[n]=3/4+(\sum_{i=2}^{n}f[i]\cdot c(n-2,i-2))/2^ ...
- HDU 4405 Aeroplane chess 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...
- HDU 4405 Aeroplane chess(期望dp)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...
随机推荐
- 用结构体解析Pascal字符串
来源:https://www.cnblogs.com/qiuyuwutong/p/8708844.html 1.什么是柔性数组? 柔性数组既数组大小待定的数组, C语言中结构体的最后一个元素可以是大小 ...
- Codeforces 878 E. Numbers on the blackboard
Codeforces 878 E. Numbers on the blackboard 解题思路 有一种最优策略是每次选择最后面一个大于等于 \(0\) 的元素进行合并,这样做完以后相当于给这个元素乘 ...
- Scala 系列(十一)—— 模式匹配
一.模式匹配 Scala 支持模式匹配机制,可以代替 swith 语句.执行类型检查.以及支持析构表达式等. 1.1 更好的swith Scala 不支持 swith,可以使用模式匹配 match.. ...
- Kruskal算法&Prim算法
最小生成树是什么? Kruskal算法 图文转载自a2392008643的博客 此算法可以称为"加边法",初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最 ...
- Java自学-类和对象 this
Java 中的 this this 这个关键字,相当于普通话里的"我" 小明说 "我吃了" 这个时候,"我" 代表小明 小红说 " ...
- maven下载,上传设置
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="http://www.w3. ...
- 【转载】C#的DataTable类Clone及Copy方法的区别
在C#中的Datatable类中,Clone方法和Copy方法都可以用来复制当前的DataTable对象,但DataTable类中的Clone方法和Copy方法还是有区别的,Clone方法只复制结构信 ...
- QCache 缓存(类似于map的模板类,逻辑意义上的缓存Cache,方便管理,默认类似于LRU的淘汰算法)
最近在学习缓存方面的知识,了解了缓存(Cache)的基本概念,为什么要使用缓存,以及一些缓存算法(缓存替换),如LRU.LFU.ARC等等. 这些缓存算法的实现过程会使用一些基本的数据结构,如list ...
- PHP简单实现异步多文件上传并使用Postman测试提交图片
虽然现在很多都是使用大平台的对象存储存放应用中的文件,但有时小项目还是可以使用以前的方式上传到和程序一起的服务器上,强调一下这里是小众需求,大众可以使用阿里云的OSS,腾讯的COS,七牛的巴拉巴拉xx ...
- thinkPHP+LayUI 懒加载实现
html <div class="layui-container" id="container"> </div> js,要引入layui ...