# -*- coding: utf-8 -*-
"""
Created on Thu Dec 20 16:05:10 2018 @author: leizhen.liu
""" import cv2.cv2 as cv2
import numpy as np data = cv2.imread('anwser.jpg')
cv2.imshow('anwser',data) #灰度處理
gray = cv2.cvtColor(data,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray',gray) kernel = np.ones((5,5),np.uint8) #膨脹操作
pengzhang = cv2.dilate(gray,kernel,iterations =1)
cv2.imshow('pengzhang',pengzhang) #腐蝕
fushi = cv2.erode(pengzhang,kernel,iterations =1)
cv2.imshow('fushi',fushi) #二值化
ret ,color2 = cv2.threshold(fushi,127,255,cv2.THRESH_BINARY_INV)
cv2.imshow('binary',color2) #轮廓
_,contours,hierarchy=cv2.findContours(color2,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#newimg=np.zeros_like(color2)
cv2.drawContours(data, contours, -1, (0,0,255),1)
cv2.imshow('lunkuo',data) cv2.waitKey(0)

注意点:1、cv2.waitKey() 要写否则图片不能显示。

python-图像目标监测(1)识别答题卡的更多相关文章

  1. opencv 识别答题卡

    参考这个网站,然后自己 找了张图片试了一下 http://blog.csdn.net/cp562090732/article/details/47804003 // test.cpp : 定义控制台应 ...

  2. 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)

    1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...

  3. 识别简单的答题卡(Bubble sheet multiple choice scanner and test grader using OMR, Python and OpenCV——jsxyhelu重新整编)

    该博客转自www.pyimagesearch.com,进行了相关修改补充. Over the past few months I've gotten quite the number of reque ...

  4. 浅谈PHP答题卡识别(一)

    最近期末考试考完了,我们也要放寒假了.于是突发奇想,想用PHP写一个答题卡识别程序.已经实现了一些,现分享给大家. 具体的步骤如下: 上传答题卡=>图片二值化(已实现)=>寻找定位点(已实 ...

  5. 【4opencv】识别复杂的答题卡1(主要算法)

    一.问题提出 由于GPY进行了纠偏,所以在采集的时候,就已经获得了质量较高的答题卡图片 下一步就是需要从这张图片中,识别出人眼识别出来的那些信息,并且将这个过程尽可能地鲁棒化,提高识别的准确率. 二. ...

  6. 机器视觉及图像处理系列之二(C++,VS2015)——图像级的人脸识别(1)

    接上一篇,一切顺利的话,你从github上clone下来的整个工程应该已经成功编译并生成dll和exe文件了:同时,ImageMagic程序亦能够打开并编辑图像了,如此,证明接下来的操练你不会有任何障 ...

  7. 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)

    在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...

  8. 第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)

    其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象 ...

  9. OpenCV 学习笔记 07 目标检测与识别

    目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV ...

随机推荐

  1. [LOJ3086] [GXOI2019] 逼死强迫症

    题目链接 LOJ:https://loj.ac/problem/3086 洛谷:https://www.luogu.org/problemnew/show/P5303 Solution 显然不考虑\( ...

  2. ADO.NET 一般操作(c#)

    ADO.NET五大对象:SqlConnection.SqlCommand.SqlDataReader.SqlDataAdapter .DataSet ,其中SqlDataAdapter 不建议使用 一 ...

  3. 广州CBC2019

    CBC2019-day1 25 August 2019 on 学术前沿huyujia 8月24日上午,CBC2019正式开幕.主持人首先对大会情况以及与会嘉宾做了简要介绍:紧接着,校领导.大会主席以及 ...

  4. python-django框架中使用docker和elasticsearch配合实现搜索功能

    注意:系统环境为Ubuntu18 一.docker安装 0:如果之前有安装过docker使用以下命令卸载: sudo apt-get remove docker docker-engine docke ...

  5. 试用一款网荐的 iOS 快速布局UI库

      NerdyUI github: https://github.com/nerdycat/NerdyUI Cupcake (Swift 版本) github: https://github.com/ ...

  6. Jenkins 构建方式有几种

    jenkins三种部署方式: 一.jenkins触发式构建:用于开发环境部署,开发人员push代码或者合并代码到gitlab项目的master分支,jenkins就部署代码到对应服务器. 二.jenk ...

  7. (五)react-native开发系列之Android原生交互

    react-native可以做web与原生的交互,这是使用react-native开发项目的主要目的之一,也是主要优势,用rn而不用原生交互则毫无价值,这篇文章用来记录在项目中rn的原生交互使用过程. ...

  8. FastDFS+Nginx搭建Java分布式文件系统

    一.FastDFS FastDFS是用c语言编写的一款开源的分布式文件系统.FastDFS为互联网量身定制,充分考虑了冗余备份.负载均衡.线性扩容等机制,并注重高可用.高性能等指标,使用FastDFS ...

  9. wireshark分析https数据包解密前后的特点

    wireshark分析https数据包解密前后的特点 (一)https解密前 1.协议种类:2种(1)TCP(第四层,传输层)(2)SSL/TLS(第五层,应用层,加解密)2.应用层数据所在数据包特点 ...

  10. 【转】简易剖析Hadoop作业工作机制

    原文地址:https://www.cnblogs.com/duma/p/10666269.html 建议:结合第四版Hadoop权威指南阅读,更有利于理解 运行机制 运行一个 MR 程序主要涉及以下 ...