性能测试解读:Kyligence vs Spark SQL
全球各种大数据技术涌现的今天,为了充分利用大量数据获得竞争优势,企业需要高性能的数据分析平台,可靠并及时地提供对海量数据的分析见解。对于数据驱动型企业,在海量数据上交互式分析的能力是非常重要的能力之一。本测试侧重在多维分析场景,对比Spark SQL 与 Kyligence 产品在大规模数据集上的查询响应的性能差异和特点。
测试产品介绍
Spark SQL 本质上是基于 DAG 的 MPP,提供 SQL 或类 SQL 的查询接口,通过将 SQL 查询请求转换成逻辑计划、物理执行,然后进行分布式的执行。在查询执行的过程中,充分利用完全基于内存的并行计算做到低延迟查询(通常是秒级到分钟级,数据量越大查询响应越慢)。
Kyligence Enterprise 是企业级智能大数据OLAP,基本思路是对数据作多维索引,查询时只扫描索引而不访问原始数据达到提速。作为充分利用了预计算技术的产品,Kyligence Enterprise 擅长提供多维分析的亚秒级响应能力。特别是在数据量呈倍数增长时,查询性能依然具有很显著的优势。
本次测试的产品是Kyligence Enterprise 4.0,对照的大数据分析引擎Spark SQL 2.4.1。
确定测试基准
在测试基准的选择上,我们考虑了实际用户的分析场景和查询特征,最终决定根据TPC-H基准进行测试。TPC-H是一个抽象了商品销售场景的决策支持系统测试基准,它定义了8张表、22条查询。测试查询普遍比较复杂,良好地代表了广泛的业务场景中,最常见的分析主题,比如定价和促销分析、供应流量和销售渠道分析、营收和利润分析、客户满意度分析、市场份额分析等。
- 查询集中的Query 1,总结了已经开票的、寄出的、退回的业务交易量。
- 查询Query 3,分析了具有最高价值的n个未发货交易单。
- 查询Query 4,确定了订单排序系统的工作情况,并评估了客户满意度。
更多查询和数据集的信息,可以了解TCP-HBenchmark标准。
准备测试数据和环境
我们使用TPC-H数据工具生成了不同规模的测试数据集,在20台物理机中使用一个资源队列进行测试。
测试查询前,KyligenceEnterprise产品通过预计算生成了不同大小的 TPC-H 数据文件,以 parquet 格式存储在安装节点的 HDFS 上供查询测试使用。每条查询都执行了多次,最终取其平均值作为实验结果。整个测试过程中,关闭了KyligenceEnterprise 4.0 的查询缓存机制。
数据集
以下为每个测试数据集中,各个表的行数。
硬件环境
测试集群的硬件配置。
测试结果和解读
在5亿数据的TPC-H 数据集上,Kyligence Enterprise 4.0的查询性能普遍优于Spark SQL 2.4。22条测试查询中,Kyligence 产品支持60% 查询在3秒以内返回结果,90% 查询可以在10秒以内返回结果,最大查询延迟也只有12.81秒。这些数据反映了,在亿级大数据上, Kyligence产品能够支持秒级的的交互式分析场景。
对比来看,Kyligence Enterprise 4.0 的查询性能明显优于 Spark SQL 2.4,其中有55% 的查询提升在10倍以上,96% 查询有提升 (query 22稍慢于Spark SQL 2.4,但性能相差不足1秒),性能优势非常明显,单条查询的性能最大提升81.81倍(query 1);单条查询时间最多缩短150秒(query 18)。
当数据集继续增加到 10亿、50亿、100亿时,即使集群资源不扩充,Kyligence Enterprise 4.0的查询延迟的总时间相对平稳。面对数据量倍数增长到100亿时,Spark SQL 作为在内存中完成数据中间处理过程的分析引擎,需要的资源也需要相应增长,否则就如图展现出由于内存资源不足导致查询报错。
结论和展望
通过本次TPC-H 查询性能的基准测试,我们可以得出Kyligence产品在多维分析场景下更有性能优势:
- 在5亿数据集上, Kyligence Enterprise4.0的查询性能远远优于Spark SQL 2.4。测试的22条查询中,60% 查询可以在3秒以内返回结果,90%查询可以在10秒以内返回结果,平均查询性能为Spark SQL2.4的24.47倍。
- 当数据集继续增加到 10亿、50亿、100亿时,即使集群资源不扩充,KyligenceEnterprise 4.0的查询总延迟时间相对平稳,平均每条查询的延迟时间保持在秒级。
根据上述结论,我们容易看出 Kyligence 产品非常擅长满足海量数据上的多维分析的场景,并且具有交互式和高性价比的特点。当企业的信息生态系统中数据持续增长时,选择 Kyligence 产品更是确保了技术投入的持续可用,不会因为数据量增长而导致 TCO 不断增长。SparkSQL作为 Spark 的一个处理结构化数据的程序模块,更适合抽取部分数据、周期性的转换数据,对部分数据进行灵活的简单分析。
转载自:https://kyligence.io/zh/blog/kyligence-vs-spark-sql/
性能测试解读:Kyligence vs Spark SQL的更多相关文章
- 详细解读Spark的数据分析引擎:Spark SQL
一.spark SQL:类似于Hive,是一种数据分析引擎 什么是spark SQL? spark SQL只能处理结构化数据 底层依赖RDD,把sql语句转换成一个个RDD,运行在不同的worker上 ...
- Spark SQL catalyst概述和SQL Parser的具体实现
之前已经对spark core做了较为深入的解读,在如今SQL大行其道的背景下,spark中的SQL不仅在离线batch处理中使用广泛,structured streamming的实现也严重依赖spa ...
- Spark SQL 之 Data Sources
#Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...
- Spark SQL 之 DataFrame
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完 ...
- Spark SQL Example
Spark SQL Example This example demonstrates how to use sqlContext.sql to create and load a table ...
- 通过Spark SQL关联查询两个HDFS上的文件操作
order_created.txt 订单编号 订单创建时间 -- :: -- :: -- :: -- :: -- :: order_picked.txt 订单编号 订单提取时间 -- :: ...
- Spark SQL 之 Migration Guide
Spark SQL 之 Migration Guide 支持的Hive功能 转载请注明出处:http://www.cnblogs.com/BYRans/ Migration Guide 与Hive的兼 ...
随机推荐
- 中国大学MOOC-翁恺-C语言程序设计习题集(一)
练习 02-0. 整数四则运算(10) 本题要求编写程序,计算2个正整数的和.差.积.商并输出.题目保证输入和输出全部在整型范围内. 输入格式: 输入在一行中给出2个正整数A和B. 输出格式: 在4行 ...
- Golang 实现单例模式
目录 只适用于单线程环境 支持并发版本 优化并发版本 sync.Once版本 只适用于单线程环境 package main import "fmt" type Single str ...
- golang 实现定时任务
在实际开发过程中,我们有时候需要编写一些定时任务.当然我们可以使用crontab命令实现我们的需求.但是这种方法不满足一些定制化场景,同时会依赖具体的操作系统环境. 定时任务 在golang中我们可以 ...
- python之生成器yeild
python生成器Generator——yield 思考: 首先思考这样一个问题: 创建一个列表,但是内存受限,容量一定是有限的.那么如果创建了一个包含100万个元素的列表,不仅占用很大的存储空间,而 ...
- 论文笔记 XGBoost: A Scalable Tree Boosting System
XGBoost是boosting算法的其中一种.Boosting算法的思想是将许多弱分类器集成在一起形成一个强分类器,其更关注与降低基模型的偏差.XGBoost是一种提升树模型(Gradient bo ...
- Mysql之锁的基本介绍
数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则.对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外.MySQL数据 ...
- Thread-specific data(TSD)线程私有数据
Thread-specific data(TSD)线程私有数据 http://blog.chinaunix.net/uid-26885237-id-3209913.html linux多线程编程中引入 ...
- Django使用LDAP
https://github.com/python-ldap/python-ldap Quick usage example: import ldap l = ldap.initialize(&quo ...
- Tomcat - 控制台乱码
1.找到${CATALINA_HOME}/conf/logging.properties 2.找到java.util.logging.ConsoleHandler.encoding = UTF-8 修 ...
- C# NPOI Excel 合并单元格和取消单元格
1.合并单元操作 //合并单元格 /** 第一个参数:从第几行开始合并 第二个参数:到第几行结束合并 第三个参数:从第几列开始合并 第四个参数:到第几列结束合并 **/ CellRangeAddres ...