代码

import numpy as np

A = np.arange(3,15)
print('-1-')
print(A)
print('-2-')
print(A[3]) A = np.arange(3,15).reshape((3,4))
print('-3-')
print(A[1]) print('-4-')
print(A[2][1]) # 第一行和第二行
print('-5-')
print(A[1:3]) print('-6-')
for row in A:
print (row) print('-7-')
for column in A.T:
print (column) print('-8-')
for item in A.flat:
print (item) # 迭代器
print('-9-')
print(A.flat) # 展成一行
print('-10-')
print(A.flatten()) A = np.array([1,1,1])
B = np.array([2,2,2]) # 上下合并
print('-11-')
print(np.vstack((A,B))) C = np.vstack((A,B))
print('-12-')
print(A.shape, C.shape) # 左右合并
D = np.hstack((A,B))
print('-13-')
print(D)
print('-14-')
print(A.shape, D.shape) #横向的数列转化到列,行向加维度
print('-15-')
print(A[np.newaxis,:]) #纵向的数列转化到行,纵向的添加维度
print('-16-')
print(A[:,np.newaxis]) A = np.array([1,1,1])[:,np.newaxis]
B = np.array([2,2,2])[:,np.newaxis] # 三个向量的横向合并
print('-17-')
print(np.hstack((A,A,B))) # 三个向量的竖向合并
C = np.concatenate((A,B,B,A))
print('-18-')
print(C) # 三个向量的竖向合并
C = np.concatenate((A,B,B,A), axis=0)
print('-19-')
print(C) # 三个向量的横向合并
C = np.concatenate((A,B,B,A), axis=1)
print('-20-')
print(C) A = np.arange(12).reshape((3,4))
print('-21-')
print(A) #分成两块,按列划分,只能进行相等的划分
print('-22-')
print(np.split(A,2,axis = 1)) print('-23-')
print(np.split(A,3,axis = 0)) #分成两块,按列划分,进行不相等的划分
print('-24-')
print(np.array_split(A,3,axis = 1)) # 垂直划分
print('-25-')
print(np.vsplit(A,3))
# 竖直划分
print('-26-')
print(np.hsplit(A,2)) a=np.arange(4)
b = a # 引用复制
c = a # abcd都是一样
d = a a[0] = 11 print('-27-')
print(b,c,d) # 都是11 d is a e = a.copy() # deep copy

  

输出

-1-
[ 3 4 5 6 7 8 9 10 11 12 13 14]
-2-
6
-3-
[ 7 8 9 10]
-4-
12
-5-
[[ 7 8 9 10]
[11 12 13 14]]
-6-
[3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]
-7-
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]
[ 6 10 14]
-8-
3
4
5
6
7
8
9
10
11
12
13
14
-9-
<numpy.flatiter object at 0x000002A6F47AB7B0>
-10-
[ 3 4 5 6 7 8 9 10 11 12 13 14]
-11-
[[1 1 1]
[2 2 2]]
-12-
(3,) (2, 3)
-13-
[1 1 1 2 2 2]
-14-
(3,) (6,)
-15-
[[1 1 1]]
-16-
[[1]
[1]
[1]]
-17-
[[1 1 2]
[1 1 2]
[1 1 2]]
-18-
[[1]
[1]
[1]
[2]
[2]
[2]
[2]
[2]
[2]
[1]
[1]
[1]]
-19-
[[1]
[1]
[1]
[2]
[2]
[2]
[2]
[2]
[2]
[1]
[1]
[1]]
-20-
[[1 2 2 1]
[1 2 2 1]
[1 2 2 1]]
-21-
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
-22-
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
-23-
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,
9, 10, 11]])]
-24-
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
-25-
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,
9, 10, 11]])]
-26-
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
-27-
[11 1 2 3] [11 1 2 3] [11 1 2 3]

  

12-numpy笔记-莫烦基本操作2的更多相关文章

  1. 16-numpy笔记-莫烦pandas-4

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  4. 13-numpy笔记-莫烦pandas-1

    代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...

  5. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  6. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  7. 17-numpy笔记-莫烦pandas-5

    代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...

  8. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  9. 莫烦大大TensorFlow学习笔记(9)----可视化

      一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...

随机推荐

  1. 浅谈lowbit运算

    关于lowbit运算的相关知识 本篇随笔简单讲解一下计算机中位运算的一类重要运算方式--\(lowbit\)运算. lowbit的概念 我们知道,任何一个正整数都可以被表示成一个二进制数.如: \[ ...

  2. EM-高斯混合模型

    EM-高斯混合模型 认识 前面为了直观认识 EM 算法, 用的"扔硬币"的案例, 是为了简化和直观, 而稍微偏应用和深入一点是高斯模型分类,这样一个话题. 就好比我们现在有一堆的数 ...

  3. 第三方系统平台如何对接gooflow2.0

    第一步,参与者数据源配置 目前提供3种参与者数据源(员工,角色,部门),还有一种sql语句 XML配置如下 <?xml version="1.0" encoding=&quo ...

  4. QFile 打开文件,不用先判断文件名是否为空,做这多余的工作

    void test_file() { QFile file(""); if (!file.open(QIODevice::WriteOnly)){ qDebug()<< ...

  5. Pycharm2019.2.4专业版激活

    Pycharm2019.2.4专业版激活 IDE是开发者创建程序时使用的的软件包,它通过简单的用户界面集成多个高度关联的组件,从而最大化提升编程体验和生产效率:本质上,IDE是一种改进代码创建.测试和 ...

  6. 项目倒入maven 遇到的问题只有 main 了

    归根结底是倒入错了: (1)首先  view->Toolbar; (2) 点击 File==>project structure 然后:在 project settings中点击 modu ...

  7. FFmpeg 是什么?

    笔者才开始学习音视频开发,主要是通过阅读刘歧.赵文杰编著的<FFmpeg从入门到精通>以及雷霄骅博士博客总结写的入门心得体会. 官方文档资料 FFmpeg官方文档:https://ffmp ...

  8. Shell基本运算符之算术、关系运算符

    Shell 运算符 =============================摘自菜鸟教程================================= Shell和其他编程语言一样,支持多种运算 ...

  9. 使用Node.js时如何引入jQuery

    使用Node.js时如何引入jQuery 首先安装jQuery依赖 npm install jquery 然后安装jsdom npm install jsdom 引入jQuery 新版正确的依赖方式 ...

  10. C# in 参数修饰符

    in 修饰符记录: 新版C# 新增加的 in 修饰符:保证发送到方法当中的数据不被更改(值类型),当in 修饰符用于引用类型时,可以改变变量的内容,单不能更改变量本身. 个人理解:in 修饰符传递的数 ...