洛谷

题意:

给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\)。

求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^T\)最大。

思路:

化简最后得:

\[\sum_{i=1}^n\sum_{j=1}^nB_{i,j}A_iA_j-\sum_{i=1}^nA_iC_i
\]

之后考虑所有的\(A_i\)都为\(1\),现在要将一部分\(A_i\)变为\(0\),最后的损失最小。

因为最后的\(A\)为\(01\)矩阵,显然最后结果为一个集合;结合损失最小,考虑最小割。

式子中只与\(A_i,A_j\)两个元素有关,单独考虑这两个元素,发现是一个很经典的最小割模型。然后解下方程就没了。

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/10/29 17:17:13
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 500 + 5; int n;
int a[N][N];
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow;
Edge(){}
Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
}e[N * N * 10];
int head[N], tot;
int dep[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
return max_flow;
}
}; Dinic <int> solver; int c[N], v[N]; void run() {
solver.init();
cin >> n;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
cin >> a[i][j];
}
}
for(int i = 1; i <= n; i++) cin >> c[i];
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) v[i] += a[i][j] + a[j][i];
v[i] -= a[i][i];
v[i] <<= 1;
}
int S = 0, T = n + 1;
for(int i = 1; i <= n; i++) {
int t = 0;
for(int j = 1; j <= n; j++) {
if(i != j) {
solver.adde(i, j, a[i][j] + a[j][i]);
t += v[i] - a[i][j] - a[j][i];
}
}
solver.adde(i, T, 2 * c[i]);
solver.adde(S, i, t);
}
int ans = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
ans += a[i][j];
}
}
int flow = solver.dinic(S, T);
dbg(ans, flow);
cout << (ans - flow / 2) << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
freopen("../input.in", "r", stdin);
freopen("../output.out", "w", stdout);
run();
return 0;
}

【洛谷P3973】[TJOI2015]线性代数(最小割)的更多相关文章

  1. 洛谷P3973 - [TJOI2015]线性代数

    Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...

  2. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  3. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  4. [TJOI2015]线性代数(最小割)

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...

  5. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  6. 洛谷3973 TJOI2015线性代数(最小割+思维)

    感觉要做出来这个题,需要一定的线代芝士 首先,我们来观察这个柿子. 我们将\(B\)的权值看作是收益的话,\(C\)的权值就是花费. 根据矩阵乘法的原理,只有当\(a[i]和a[j]\)都为\(1\) ...

  7. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  8. 洛谷P4014 分配问题【最小/大费用流】题解+AC代码

    洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...

  9. 洛谷 [P3973] 线性代数

    最大权闭合子图,神题 这不是线性代数,这是网络流. 我们看见这是一堆矩阵的运算,而且最后变成了一个数,那么我们就想到,把这个矩阵乘法的过程用具体的数字推出来 我们发现,a是一个01矩阵,然后其实就可以 ...

随机推荐

  1. SpringMVC详细流程(一)

    Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基于请求驱动指的就是使用请求-响应模 ...

  2. Mybatis拦截器(六)

    拦截器的作用就是我们可以拦截某些方法的调用,在目标方法前后加上我们自己逻辑. Mybatis拦截器设计的一个初衷是为了供用户在某些时候可以实现自己的逻辑而不必去动Mybatis固有的逻辑. Mybat ...

  3. luoguP4770 [NOI2018]你的名字

    题意 不妨先考虑\(l=1,r=|S|\)的情况: 这时我们要求的其实是\(S,T\)的本质不同的公共子串数量. 首先对\(S\)建一个后缀自动机,同时对于每个\(T\),我们也建一个自动机. 根据后 ...

  4. A1063 Set Similarity (25 分)

    一.技术总结 这个题目是属于set容器的内容,使用可以减少很多代码量 开始试过在同一个for循环中定义两个auto,结果编译通不过,有时候构思很重要,就比如这一题,开始我是一个一个去加,而代码中是,先 ...

  5. 研究是一门艺术 (韦恩·C·布斯, 格雷戈里·G·卡洛姆, 约瑟夫·M·威廉姆斯 著)

    第一部分 研究,研究者与读者 前言: 开始一个研究计划 (已看) 第一章 以书面形式来思考 (已看) 第二章 与读者建立联系 第二部分 提问题,找答案 前言: 规划你的研究计划 第三章 从题目到问题 ...

  6. java、JavaScript获取微信用户信息登录优化方案

    1.获取微信用户信息要调用微信的好几个接口,再加上自己系统的接口就会变的很慢,影响用户体验,之前走过的弯路我就不赘述了,直接说新的方案. 2.第一步都是向微信发起获取用户code请求: 请求接口:ht ...

  7. HTML+css基础 css的几种形式 css选择器的两大特性

    3.外联样式 css选择器的两大特性 1.继承性:所有跟文本字体有关的属性都会被子元素继承.且权重是0000. 2.层叠性:就是解决选择器权重大小的一种能力,就是看那个选择器的权重大.谁的权重大听谁的 ...

  8. CodeForces - 560D Equivalent Strings

    Today on a lecture about strings Gerald learned a new definition of string equivalency. Two strings ...

  9. 用Maven整合SSM框架

    前述 Maven 是专门用于构建和管理Java相关项目的工具,利用 Maven 的主要目的是统一维护 jar 包.关于 Maven 的安装在这篇里面就不说了. SSM(Spring+SpringMVC ...

  10. 阿里云容器服务中国最佳,进入 Forrester 报告强劲表现者象限

    近日,全球知名市场调研机构 Forrester 发布首个企业级公共云容器平台报告. 报告显示:阿里云容器服务创造了中国企业最好成绩,与谷歌云位于同一水平线,进入强劲表现者象限. 究其原因,分析师认为: ...