Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
  Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
  Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
  engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

给定一个元素代表某股票每天价格的数组,最多可以买卖股票2次,还是不能同时有多个交易,买之前要卖出,求最大利润。

两次买卖在时间跨度上不能有重叠(当然第一次的卖出时间和第二次的买入时间可以是同一天)。既然不能有重叠可以将整个序列以任意坐标i为分割点,分割成两部分:

prices[0:n-1] => prices[0:i] + prices[i:n-1],对于这个分割来说,最大收益为两段的最大收益之和。每一段的最大收益用I的解法来做。最大收益是对所有0<=i<=n-1的分割的最大收益取一个最大值。

1. 计算A[0:i]的收益最大值:用minPrice记录i左边的最低价格,用maxLeftProfit记录左侧最大收益
2. 计算A[i:n-1]的收益最大值:用maxPrices记录i右边的最高价格,用maxRightProfit记录右侧最大收益。
3. 最后这两个收益之和便是以i为分割的最大收益。将序列从左向右扫一遍可以获取dp1,从右向左扫一遍可以获取dp2。相加后取最大值即为答案。

时间复杂度O(n), 空间复杂度O(n)

Java:Divide and conquer

public class Solution {
public int maxProfit(int[] prices) {
// find maxProfit for {0, j}, find maxProfit for {j + 1, n - 1}
// find max for {max{0, j}, max{j + 1, n - 1}} if (prices == null || prices.length == 0) {
return 0;
} int maximumProfit = 0;
int n = prices.length; ArrayList<Profit> preMaxProfit = new ArrayList<Profit>(n);
ArrayList<Profit> postMaxProfit = new ArrayList<Profit>(n);
for (int i = 0; i < n; i++) {
preMaxProfit.add(maxProfitHelper(prices, 0, i));
postMaxProfit.add(maxProfitHelper(prices, i + 1, n - 1));
}
for (int i = 0; i < n; i++) {
int profit = preMaxProfit.get(i).maxProfit + postMaxProfit.get(i).maxProfit;
maximumProfit = Math.max(profit, maximumProfit);
}
return maximumProfit;
} private Profit maxProfitHelper(int[] prices, int startIndex, int endIndex) {
int minPrice = Integer.MAX_VALUE;
int maxProfit = 0;
for (int i = startIndex; i <= endIndex; i++) {
if (prices[i] < minPrice) {
minPrice = prices[i];
}
if (prices[i] - minPrice > maxProfit) {
maxProfit = prices[i] - minPrice;
}
}
return new Profit(maxProfit, minPrice);
} public static void main(String[] args) {
int[] prices = new int[]{4,4,6,1,1,4,2,5};
Solution s = new Solution();
System.out.println(s.maxProfit(prices));
}
}; class Profit {
int maxProfit, minPrice;
Profit(int maxProfit, int minPrice) {
this.maxProfit = maxProfit;
this.minPrice = minPrice;
}
}

Java:DP

public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) {
return 0;
} int[] left = new int[prices.length];
int[] right = new int[prices.length]; // DP from left to right;
left[0] = 0;
int min = prices[0];
for (int i = 1; i < prices.length; i++) {
min = Math.min(prices[i], min);
left[i] = Math.max(left[i - 1], prices[i] - min);
} //DP from right to left;
right[prices.length - 1] = 0;
int max = prices[prices.length - 1];
for (int i = prices.length - 2; i >= 0; i--) {
max = Math.max(prices[i], max);
right[i] = Math.max(right[i + 1], max - prices[i]);
} int profit = 0;
for (int i = 0; i < prices.length; i++){
profit = Math.max(left[i] + right[i], profit);
} return profit;
}
}

Python:T:O(n), S: O(n)

class Solution3:
def maxProfit(self, prices):
min_price, max_profit_from_left, max_profits_from_left = float("inf"), 0, []
for price in prices:
min_price = min(min_price, price)
max_profit_from_left = max(max_profit_from_left, price - min_price)
max_profits_from_left.append(max_profit_from_left) max_price, max_profit_from_right, max_profits_from_right = 0, 0, []
for i in reversed(range(len(prices))):
max_price = max(max_price, prices[i])
max_profit_from_right = max(max_profit_from_right, max_price - prices[i])
max_profits_from_right.insert(0, max_profit_from_right) max_profit = 0
for i in range(len(prices)):
max_profit = max(max_profit, max_profits_from_left[i] + max_profits_from_right[i]) return max_profit

Python:

class Solution:
def maxProfit(self, prices):
hold1, hold2 = float("-inf"), float("-inf")
release1, release2 = 0, 0
for i in prices:
release2 = max(release2, hold2 + i)
hold2 = max(hold2, release1 - i)
release1 = max(release1, hold1 + i)
hold1 = max(hold1, -i);
return release2  

C++:DP

class Solution {
public:
int maxProfit(vector<int> &prices) {
if(prices.empty()) return 0;
int n = prices.size();
vector<int> leftProfit(n,0); int maxLeftProfit = 0, minPrice = prices[0];
for(int i=1; i<n; i++) {
if(prices[i]<minPrice)
minPrice = prices[i];
else
maxLeftProfit = max(maxLeftProfit, prices[i]-minPrice);
leftProfit[i] = maxLeftProfit;
} int ret = leftProfit[n-1];
int maxRightProfit = 0, maxPrice = prices[n-1];
for(int i=n-2; i>=0; i--) {
if(prices[i]>maxPrice)
maxPrice = prices[i];
else
maxRightProfit = max(maxRightProfit, maxPrice-prices[i]);
ret = max(ret, maxRightProfit + leftProfit[i]);
} return ret;
}
};

  

类似题目:

[LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

[LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

[LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

[LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

All LeetCode Questions List 题目汇总

  

[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III的更多相关文章

  1. [LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. LeetCode 121. Best Time to Buy and Sell Stock (买卖股票的最好时机)

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  5. [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. LN : leetcode 123 Best Time to Buy and Sell Stock III

    lc 123 Best Time to Buy and Sell Stock III 123 Best Time to Buy and Sell Stock III Say you have an a ...

  7. [leetcode]123. Best Time to Buy and Sell Stock III 最佳炒股时机之三

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  8. 122 Best Time to Buy and Sell Stock II 买卖股票的最佳时机 II

    假设有一个数组,它的第 i 个元素是一个给定的股票在第 i 天的价格.设计一个算法来找到最大的利润.你可以完成尽可能多的交易(多次买卖股票).然而,你不能同时参与多个交易(你必须在再次购买前出售股票) ...

  9. Java for LeetCode 123 Best Time to Buy and Sell Stock III【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

随机推荐

  1. 学习app开发思路

    1.首先在学习之前进行一次或者是整体或者是部分的检测,当第一次检测就通过,则可以认为是熟练掌握的东西(可以在后期对其进行验证是否是熟练)2.后面的学习过程,对回答的正确与否以及从第一次开始学习到目前为 ...

  2. Centos7服务器搭建部署显卡计算环境以及常用软件的安装使用

    安装好anaconda的服务器上会more你已经安装好jupyter notebook,执行下面的命令可以提供链接地址允许远程浏览器打开并访问: jupyter notebook --no-brows ...

  3. discuz x3.4 开启tags聚合标签及伪静态配置方法

    因为SEO的需要,要做tags聚合到一个页面,做到伪静态. 例如: misc.php?mod=tag >>> /tag/ misc.php?mod=tag&id=47 > ...

  4. HDU-2196-Computer(树上DP)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=2196 题意: A school bought the first computer some time ...

  5. 2019.12.06 java基础

    JRE:运行环境(包含JVM(Java Virtual Machine)- Java虚拟机和核心类库) JDK: JAVA语言的软件开发工具包(Java Development Kit) Dos命令行 ...

  6. 洛谷 P2004 领地选择 题解

    P2004 领地选择 题目描述 作为在虚拟世界里统帅千军万马的领袖,小Z认为天时.地利.人和三者是缺一不可的,所以,谨慎地选择首都的位置对于小T来说是非常重要的. 首都被认为是一个占地C*C的正方形. ...

  7. HTML5之图片在Retina屏的常用几种处理方式

    Media Queries使用css3的媒体查询实现高清屏的图片处理. @media only screen and (-webkit-min-device-pixel-ratio: 1.5), on ...

  8. html转为图片插件:html2canvas保存图片模糊问题解决

    使用官网的CDN: <script src="http://html2canvas.hertzen.com/dist/html2canvas.min.js"></ ...

  9. 照片放大功能h5

    这里就不放图了,放大的是别人的身份证 <template> <div class="image-cell__wrapper" :style="borde ...

  10. D3.js的v5版本入门教程(第七章)—— 比例尺的使用

    D3.js的v5版本入门教程(第七章) 比例尺在D3.js中是一个很重要的东西,我们可以这样理解d3.js中的比例尺——一种映射关系,从domain映射到range域(为什么会是domain和rang ...