数据分析之sklearn
一,介绍
Python 中的机器学习库
- 简单高效的数据挖掘和数据分析工具
- 可供大家使用,可在各种环境中重复使用
- 建立在 NumPy,SciPy 和 matplotlib 上
- 开放源码,可商业使用 - BSD license

二,线性回归算法模型
2个概念
样本集:用于对机器学习算法模型对象进行训练。样本集通常为一个DataFrame。
- 特征数据:特征数据的变化会影响目标数据的变化。必须为多列。
- 目标数据:结果。通常为一列
1,建立线性回归算法模型对象
from sklearn.linear_model import LinearRegression
linear = LinearRegression() # 实例化 线性回归算法模型对象
2,使用样本数据对模型进行训练
数据:
near_citys_dist: array([47, 8, 71, 14, 37], dtype=int64) # 城市距离海边的最远距离
near_citys_max_temp: array([32.75, 32.79, 33.85, 32.81, 32.74]) # 城市的最高温度
# 使用这两组数据预测 城市温度与距离海边距离的关系
linear.fit(near_citys_dist.reshape(-1,1),near_citys_max_temp) # 注意特征数据必须时多列,所以把array转化为多列的
返回值: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
3,对模型进行精准度的评分
linear.score(near_citys_dist.reshape(-1,1),near_citys_max_temp) # 0.5549063263099332
4,使用模型进行预测
x = np.array([65,44,12,99]).reshape(-1,1) # 给定一组特征数据
y = linear.predict(x) # 预测其值
# array([ 33.40442982, 33.10898974, 32.65879535, 33.88276137]) #绘制回归曲线
x = np.linspace(0,100,num=100) # 给定一组特征数据
y = linear.predict(x.reshape(-1,1)) # 预测其值 plt.figure(figsize=(7,7))
plt.scatter(citys_dist,citys_max_temp)
plt.scatter(x,y)
plt.title('温度和距海洋距离关系')
plt.xlabel('距离')
plt.ylabel('温度')

数据分析之sklearn的更多相关文章
- python实现线性回归
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处 ...
- Python数据挖掘之随机森林
主要是使用随机森林将four列缺失的数据补齐. # fit到RandomForestRegressor之中,n_estimators代表随机森林中的决策树数量 #n_jobs这个参数告诉引擎有多少处理 ...
- 数组与pandas模块
'''数组与pandas模块''' # numpy模块:用来做数据分析,对numpy数组(既有行又有列)--矩阵进行科学运算 # tensorflow/pytorch(数学专业/物理专业/计科专业硕士 ...
- 文本分类:Keras+RNN vs传统机器学习
摘要:本文通过Keras实现了一个RNN文本分类学习的案例,并详细介绍了循环神经网络原理知识及与机器学习对比. 本文分享自华为云社区<基于Keras+RNN的文本分类vs基于传统机器学习的文本分 ...
- 以KNN为例用sklearn进行数据分析和预测
准备 相关的库 相关的库包括: numpy pandas sklearn 带入代码如下: import pandas as pd import numpy as np from sklearn.nei ...
- 大数据分析——sklearn模块安装
前提条件:numpy.scipy以及matplotlib库的安装 (注:所有操作都在pycharm命令终端进行) ①numpy安装 pip install numpy ②scipy安装 pip ins ...
- 使用sklearn优雅地进行数据挖掘【转】
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...
- kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>
Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...
- 使用sklearn优雅地进行数据挖掘
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...
随机推荐
- Mysql 执行效率 性能综合贴
一.or 的性能不如 in [参考]mysql in与or效率比较 二.MySQL数据库开发的三十六条军规 [参考]https://blog.csdn.net/aa_moon/article/deta ...
- FileHelper-文件操作工具
import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io ...
- springboot+mybatisplus+druid数据库
1.添加maven依赖 <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis ...
- Spring-boot2X基于sharding-jdbc3.x分表分库
ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC.Sharding-Proxy和Sharding-Sidecar(计划中)这3款相互独立的 ...
- 【windows】win10新增用户
1.打开[计算机管理]
- org.apache.hadoop.conf.Configuration无法引用 解决方法
我用的是Hadoop-common 2.6.4jar,可是明明包里面有这个类却引用不了,然后我看了下包里面是一个抽象类......................................... ...
- jQuery.js引入时要在其他js文件之前,否则js中无法识别jQuery的语法
- Python多进程方式抓取基金网站内容的方法分析
因为进程也不是越多越好,我们计划分3个进程执行.意思就是 :把总共要抓取的28页分成三部分. 怎么分呢? # 初始range r = range(1,29) # 步长 step = 10 myList ...
- Python2 和 Python3区别
字符串类型不同 py3: str bytes py2: unicode str 默认解释器编码 输入输出 int int long 除法 range和xrang 模块和包 字典 keys py2:列表 ...
- Vue框架(三)——Vue项目搭建和项目目录介绍、组件、路由
Vue项目环境搭建 1) 安装node,在官网下载好,然后在本地安装 官网下载安装包,傻瓜式安装:https://nodejs.org/zh-cn/ 2) 换源安装cnpm >: npm ins ...