传送门


为了方便把串反过来,条件变为\(t_i\)是\(t_{i+1}\)的真子串,答案显然不变。

一件重要的事情是必定存在一种最优解,字符串序列\(\{t\}\)满足\(|t_i| = i\)。

考虑DP:设\(f_i\)表示字符串序列\(\{t\}\)的最后一个串的结尾位置为\(i\)时,\(|t|\)的最大值。不难发现如果\(f_i = x\),那么一定存在最后一个串结尾位置为\(i\)、长度在\([1,x]\)内的字符串序列。

因为有\(f_i \leq f_{i-1}+1\)(因为对于一个能够满足序列长度为\(f_i\)、最后一个串结尾为\(i\)的字符串序列\(t\),把第一个字符串删掉,然后把其他的串的最后一个字符删掉,就可以得到序列长度为\(f_i - 1\)、最后一个串结尾为\(i-1\)的一个合法的字符串序列),所以可以从大到小枚举\(f_i\)的合法取值,这里的总check次数是\(O(n)\)的。

那么问题变成如何check。考虑我们实际上只需要满足\(s_{1,i - f_i}\)中是否存在一个\(s_{i - f_i + 1 , i}\)的子串满足该串的结尾的\(f\)值大于等于\(f_i - 1\)。注意到可能满足条件的只有两个子串(\(s_{i - f_i + 1 , i - 1}\)和\(s_{i - f_i + 2 , i}\)),所以我们只需要知道这些点所有\(\leq i - f_i\)的endpos中的\(f\)值的最大值。注意到\(i - f_i\)是单调不降的,所以我们可以使用一个指针维护当前询问的前缀,在线段树上做单点修改、子树查询最大值即可。

代码

CF1063F String Journey DP、SAM、线段树的更多相关文章

  1. [CF1063F]String Journey[后缀数组+线段树]

    题意 在 \(S\) 中找出 \(t\) 个子串满足 \(t_{i+1}\) 是 \(t_{i}\) 的子串,要让 \(t\) 最大. \(|S| \leq 5\times 10^5\). 分析 定义 ...

  2. bzoj1396识别子串(SAM+线段树)

    复习SAM板子啦!考前刷水有益身心健康当然这不是板子题/水题…… 很容易发现只在i位置出现的串一定是个前缀串.那么对答案的贡献分成两部分:一部分是len[x]-fa~len[x]的这部分贡献会是r-l ...

  3. CF1063F. String Journey(后缀数组+线段树)

    题目链接 https://codeforces.com/contest/1063/problem/F 题解 虽然本题有时间复杂度较高但非常好写的做法...... 首先,若答案为 \(k\),则一定存在 ...

  4. CF700E-Cool Slogans【SAM,线段树合并,dp】

    正题 题目链接:https://www.luogu.com.cn/problem/CF700E 题目大意 给出一个字符串\(S\),求一个最大的\(k\)使得存在\(k\)个字符串其中\(s_1\)是 ...

  5. CF700E Cool Slogans——SAM+线段树合并

    RemoteJudge 又是一道用线段树合并来维护\(endpos\)的题,还有一道见我的博客CF666E 思路 先把\(SAM\)建出来 如果两个相邻的串\(s_i\)和\(s_{i+1}\)要满足 ...

  6. Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html 题解 首先建个SAM. 一个结论:对于parent树上任意一个点x,以及它所代表的子树内任 ...

  7. CF700E:Cool Slogans(SAM,线段树合并)

    Description 给你一个字符串,如果一个串包含两个可有交集的相同子串,那么这个串的价值就是子串的价值+1.问你给定字符串的最大价值子串的价值. Input 第一行读入字符串长度$n$,第二行是 ...

  8. CF1037H Security——SAM+线段树合并

    又是一道\(SAM\)维护\(endpos\)集合的题,我直接把CF700E的板子粘过来了QwQ 思路 如果我们有\([l,r]\)对应的\(SAM\),只需要在上面贪心就可以了.因为要求的是字典序比 ...

  9. CF666E Forensic Examination——SAM+线段树合并+倍增

    RemoteJudge 题目大意 给你一个串\(S\)以及一个字符串数组\(T[1...m]\),\(q\)次询问,每次问\(S\)的子串\(S[p_l...p_r]\)在\(T[l...r]\)中的 ...

随机推荐

  1. Java实现一个简单的事件监听器

    关于事件监听我们需要知道的一些基础知识. a)事件三要素(who when what): source -- 事件源 when -- 事件发生时间 message -- 事件主题消息,即希望通过事件传 ...

  2. 服务在kubernetes上优雅退出

    在dashboard上,直接操作一下就可以了:将spec.replicas = 0,对应的容器组会自动销毁

  3. mysql优化查找执行慢的sql

    想要进行sql优化,肯定得先找出来需要优化的sql语句 一.mysql有一个自带的sql执行慢记录日志文件,所记录的日志取决于参数long_query_time控制,默认情况下long_query_t ...

  4. unity EditorGUILayer绘制报错

    最近在开发一个可视化工具的时候,遇到了一个代码错误,小小的记录一下 具体的报错信息:ArgumentException: Getting control 0's position in a group ...

  5. [Beta]Scrum Meeting#8

    github 本次会议项目由PM召开,时间为5月13日晚上10点30分 时长10分钟 任务表格 人员 昨日工作 下一步工作 木鬼 撰写博客整理文档 撰写博客整理文档 swoip 为适应新功能调整布局 ...

  6. leetcode 877. 石子游戏

    题目描述: 亚历克斯和李用几堆石子在做游戏.偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] . 游戏以谁手中的石子最多来决出胜负.石子的总数是奇数,所以没有平局. 亚历克斯和李轮流进行,亚 ...

  7. MyBatis(六):Mybatis Java API编程实现一对多、一对一

    最近工作中用到了mybatis的Java API方式进行开发,顺便也整理下该功能的用法,接下来会针对基本部分进行学习: 1)Java API处理一对多.多对一的用法: 2)增.删.改.查的用法: 3) ...

  8. Evolutionary approaches towards AI: past, present, and future

    Evolutionary approaches towards AI: past, present, and future 2019-10-06 07:28:13 This blog is from: ...

  9. java实现的一个【快速排序 】算法【原创】

    import java.util.Arrays; import org.apache.commons.lang.ArrayUtils; public class Test { public stati ...

  10. CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...