Problem Description

Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109). Please find all pairs (a, b) which satisfied the equation a^(k1⋅n+b1 )+ b^(k2⋅n−k2+1) = 0 (mod C)(n = 1, 2, 3, ...).

Input

There are multiple test cases (no more than 30). For each test, a single line contains four integers C, k1, b1, k2.

Output

First, please output "Case #k: ", k is the number of test case. See sample output for more detail.
Please output all pairs (a, b) in lexicographical order. (1≤a,b<C). If
there is not a pair (a, b), please output -1.

Sample Input

23 1 1 2

Sample Output

Case #1:

1 22

题目意思一开始理解错了,然后以为只要能找到一个n满足条件,这组(a, b)就算满足条件。

原来是要所有n满足才行,这样题目就是任意型问题,相对会好解决一点。

既然是任意,肯定考虑先取些特殊值试试。

自然考虑取n=1,

发现a^(k1+b1)
+ b = 0(mod c)

这样就把b在模c情况下的值求出来了。

b = - a^(k1+b1)(mod
c)

然后继续带入n = 2,

a^(2k1+b1)
+ b^(k2+1) = 0(mod c)

大胆猜测这个式子成立,n取任何数都会成立。

因为n加1时,a的指数和b的指数增量是一定的,那么n取任何数时,必然和n-1之前相差的式子是一个定值多项式。

首先n
= 2时,

可以得到b^(k2+1)
= -a^(2k1+b1) = -a^(k1+b1)*a^k1 = b*a^k1

这一步可以通过n = 1得到的结论两边消掉一个b,得:

b^k2 =
a^k1。

也就是说由n = 1满足,让n = 2满足的条件是b^k2 = a^k1。

基本是可以YY一下,由n = 2满足,让n = 3满足的条件是b^k2 = a^k1。

即由n
= k满足,让n
= k+1满足的条件是b^k2
= a^k1。

这一步用数学归纳法随便搞一搞就可以验证了。

不知道是什么情况,比赛时是n = 1得出b, n = 2验证b过的。

现在重写了一遍死活T。。。

后来换成n
= 2时验证式子b^k2
= a^k1就能过了。。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; int c, k1, b1, k2; //快速幂m^n
LL quickPow(LL x, LL n)
{
LL a = ;
while (n)
{
a *= n& ? x : ;
a %= c;
n >>= ;
x *= x;
x %= c;
}
return a;
} bool judge(LL a, LL b)
{
if (quickPow(a, k1) != quickPow(b, k2))
return false;
else
return true;
} void work()
{
LL b;
bool flag = false;
for (int a = ; a < c; ++a)
{
b = -quickPow(a, (b1+k1)%(c-));
b = (b+c)%c;
if (judge(a, b))
{
printf("%d %I64d\n", a, b);
flag = true;
}
}
if (!flag)
printf("-1\n");
} int main()
{
//freopen("test.in", "r", stdin);
int times = ;
while (scanf("%d%d%d%d", &c, &k1, &b1, &k2) != EOF)
{
printf("Case #%d:\n", times);
work();
times++;
}
return ;
}

ACM学习历程—HDU5478 Can you find it(数论)(2015上海网赛11题)的更多相关文章

  1. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  2. ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)

    Problem Description In Geometry, the problem of track is very interesting. Because in some cases, th ...

  3. ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)

    Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...

  4. ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)

    Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...

  5. ACM学习历程—HDU 5459 Jesus Is Here(递推)(2015沈阳网赛1010题)

    Sample Input 9 5 6 7 8 113 1205 199312 199401 201314 Sample Output Case #1: 5 Case #2: 16 Case #3: 8 ...

  6. ACM学习历程—HDU 5451 Best Solver(Fibonacci数列 && 快速幂)(2015沈阳网赛1002题)

    Problem Description The so-called best problem solver can easily solve this problem, with his/her ch ...

  7. ACM学习历程—HDU 5443 The Water Problem(RMQ)(2015长春网赛1007题)

    Problem Description In Land waterless, water is a very limited resource. People always fight for the ...

  8. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

  9. ACM学习历程—HDU5407 CRB and Candies(数论)

    Problem Description CRB has N different candies. He is going to eat K candies.He wonders how many co ...

随机推荐

  1. 【智力题】IO——行测、笔试、面试中遇到的

    昨天(05.23)下午去参加了明源软件的暑期实习宣讲+笔试,第一次听说这个行业,行业和笔试风格完全不一样啊,5道行测智力题+1个问答+ 斐波那契数列 + 洗牌算法(思想.流程图.代码),今年回来后线上 ...

  2. Computer Transformation(简单数学题+大数)

    H - Computer Transformation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &am ...

  3. 【oracle案例】ORA-01722

    1.1.   ORA-01722 日期:2014-06-05 14:09 环境:測试环境   [情景描写叙述] 在数据库的升级过程中,运行SQL> @?/rdbms/admin/catupgrd ...

  4. 淘宝开放平台php-sdk测试 获取淘宝商品信息(转)

    今天想使用淘宝开放平台的API获取商品详情,可是以前一直没使用过,看起来有点高深莫测,后然看开发入门,一步一步,还真有点感觉了,然后看示例,还真行了,记下来以后参考.其中遇到问题,后然解决了.因为我已 ...

  5. 很详细、很移动的Linux makefile 教程

    近期在学习Linux下的C编程,买了一本叫<Linux环境下的C编程指南>读到makefile就越看越迷糊,可能是我的理解能不行. 于是google到了以下这篇文章.通俗易懂.然后把它贴出 ...

  6. 第14条:尽量用异常来表示特殊情况,而不要返回Nono

    核心知识点: 1.用None这个返回值来表示特殊意义的函数,很容易使调用者犯错,因为None和0以及空字符串之类的值,在条件表达式里都会评估为False. 2.两种方法:二元法:将异常抛给上一级直接报 ...

  7. python中的一些坑(待补充)

    函数默认参数使用可变对象 def use_mutable_default_param(idx=0, ids=[]): ids.append(idx) print(idx) print(ids) use ...

  8. LeetCode:加油站【134】

    LeetCode:加油站[134] 题目描述 在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升. 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要 ...

  9. html5 css3 进度条特效

    https://www.html5tricks.com/tag/css3%E8%BF%9B%E5%BA%A6%E6%9D%A1/page/3

  10. Please enable network time synchronisation in system settings

    eth区块同步出现这样的WARN: WARN [06-17|13:02:42] System clock seems off by -51.509894715s, which can prevent ...