题目链接: http://codeforces.com/problemset/problem/785/D

题意: 左边全为 '(' 右边全为 ')' 且两者数量想等的字符串称为 RSBS. 给出一个由 '(' 和 ')' 组成的字符串, 问其有多少子序列是 RSBS.

思路: 可以先预处理一下, 用 a[i] 记录 i 前面(包括 i 这个位置)的 '(' 的数目, b[i] 记录 i 后面(包括 i 这个位置)的 ')' 的数目, 然后从左往右枚举以 '(' 结尾的情况,

那么当前情况下的 RSBS 数目为:

C(a[i] - 1, 0) * C(b[i], 1) + C(a[i] - 1, 1) * C(b[i], 2) + C(a[i] - 1, 2) * C(b[i], 3) + ...

= ∑min(a-1, b-1)0  C(a - 1, x) * C(b, x + 1)

= ∑min(a-1, b-1)0  C(a - 1, a - 1 - x) * C(b, x + 1)

= C(a - 1 + b, a) (范德蒙恒等式)

然后将所有情况的 RSBS 数目累加一下就好啦.

注意这里的组合数比较大, 取模的话需要用到 exgcd 或者 快速幂.

代码1: 快速幂求组合数取模 C(n, m) % mode = (n! % mode) * get_pow((n - m)! * m! % mode, mode - 2) % mode. (这个公式能通过费马小定理变换得到).

 #include <iostream>
#define ll long long
using namespace std; const int mode = 1e9 + ;
const int MAXN = 2e5 + ;
ll a[MAXN], b[MAXN], gel[MAXN];
string s; ll get_pow(ll x, int n){
ll ans = ;
while(n){
if(n & ) ans = ans * x % mode;
x = x * x % mode;
n >>= ;
}
return ans;
} int main(void){
ll ans = ;
cin >> s;
if(s[] == '(') a[] = ;
for(int i = ; i < s.size(); i++){
if(s[i] == '(') a[i] = a[i - ] + ;
else a[i] = a[i - ];
}
for(int i = s.size() - ; i >= ; i--){
if(s[i] == ')') b[i] = b[i + ] + ;
else b[i] = b[i + ];
}
gel[] = ;
for(int i = ; i < MAXN; i++){
gel[i] = gel[i - ] * i % mode;
}
for(int i = ; i < s.size(); i++){
if(s[i] == ')') continue;
ll cnt1 = a[i], cnt2 = a[i] + b[i] - ;
ans = (ans + (gel[cnt2] * get_pow(gel[cnt1] * gel[cnt2 - cnt1] % mode, mode - )) % mode) % mode;
}
cout << ans << endl;
return ;
}

代码2: 用乘法逆元求得组合数取模

 #include <iostream>
#define ll long long
using namespace std; const int mode = 1e9 + ;
const int MAXN = 2e5 + ;
ll a[MAXN], b[MAXN], gel[MAXN];
string s; void exgcd(ll a, ll b, ll &x, ll &y){
if(!b){
y = ;
x = ;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
} int main(void){
ll ans = ;
cin >> s;
if(s[] == '(') a[] = ;
for(int i = ; i < s.size(); i++){
if(s[i] == '(') a[i] = a[i - ] + ;
else a[i] = a[i - ];
}
for(int i = s.size() - ; i >= ; i--){
if(s[i] == ')') b[i] = b[i + ] + ;
else b[i] = b[i + ];
}
gel[] = ;
for(int i = ; i < MAXN; i++){
gel[i] = gel[i - ] * i % mode;
}
for(int i = ; i < s.size(); i++){
if(s[i] == ')') continue;
ll cnt1 = a[i], cnt2 = a[i] + b[i] - ;
ll cc1 = gel[cnt2], cc2 = gel[cnt2 - cnt1] * gel[cnt1] % mode;
ll x, y;
exgcd(cc2, mode, x, y);
x = (x % mode + mode) % mode;
ans = (ans + (cc1 * x) % mode) % mode; }
cout << ans << endl;
return ;
}

cf785D(组合数学)的更多相关文章

  1. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  2. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  3. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

  4. uestc1888 Birthday Party    组合数学,乘法原理

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...

  5. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  6. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

  7. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  8. hdu 4810 Wall Painting (组合数学+二进制)

    题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...

  9. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

随机推荐

  1. 原生js图片懒加载特效

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. python基础-变量

    1.什么是变量? 其实就是给数据起个名字而已.在python中你不想要关心数据类型,因为在你赋值的时候它已经自己帮你识别了 2.创建变量时候会在内存中开辟一个空间,具体的细节不需要咱们关心,解释器会分 ...

  3. JSP分页1

    分页 1.什么分页? 第N页/共M页 首页 上一页 1 2 3 4 5 6 7 8 9 10 下一页 尾页 口 go 分页的优点:只查询一页,不用查询所有页! 2.分页数据 页面的数据都是由Servl ...

  4. leetcode 226. Invert Binary Tree(递归)

    Invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 / \ / \ 9 6 3 1 Trivia:This problem was ...

  5. 【leetcode刷题笔记】Roman to Integer

    Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from 1 t ...

  6. Git 部署 Web 网站

    /*************************************************************************** * Git 部署 Web 网站 * 说明: * ...

  7. 2016北京集训 小Q与进位制

    题目大意 一个数每一位进制不同,已知每一位的进制,求该数的十进制表达. 显然有 $$Ans=\sum\limits_{i=0}^{n-1}a_i \prod\limits_{j=0}^{i-1}bas ...

  8. IronPython for ASP.NET 部署注意事项

    用 IronPython for ASP.NET 开发的网站,在部署时,除了发布 bin 目录下的 IronPython.dll, IronMath.dll, Microsoft.Web.IronPy ...

  9. 标准模板库(STL)学习指南之sort排序

    对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算法也基本固定下来,不需要你再去花费心思 ...

  10. poj 1637 Sightseeing tour —— 最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一 ...