[Luogu3338] [BZOJ5327] (DarkBZOJ数据有问题)


\(19.3.8\)

前置知识:[知乎-如何通俗易懂地解释卷积] [FFT详解]

\(1.\)卷积定义

我们称 \((f*g)(n)\) 为$ f,g$ 的卷积

其连续的定义为:

\(\displaystyle (f*g)(n)=\int _{-\infty }^{\infty }f(\tau )g(n-\tau )d\tau \\\)

其离散的定义为:

\(\displaystyle (f*g)(n)=\sum _{\tau =-\infty }^{\infty }{f(\tau )g(n-\tau )}\\\)

本题题解:推式子

\(2.\)推式子原则\(:\)枚举\(j,\)则把多余的变量\(i\)消掉

这里比较巧妙的转化:\(0\le j \le n-i \ <==> \ 0 \le n-i-j \le n-i\)

\(3.\)FFT模板


\(19.4.3\)

根本不用那么麻烦 , 直接把数组反过来就行了 ...

更新于\(19.4.3\)的代码

// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int MAXN=3e5+5;//开3倍空间
const double Pi=acos(-1); namespace F_F_T{ struct cmpx{
double x,y;
cmpx(double xx=0,double yy=0){x=xx,y=yy;}
inline friend cmpx operator + (cmpx a,cmpx b){return cmpx(a.x+b.x,a.y+b.y);}
inline friend cmpx operator - (cmpx a,cmpx b){return cmpx(a.x-b.x,a.y-b.y);}
inline friend cmpx operator * (cmpx a,cmpx b){return cmpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
}A[MAXN],B[MAXN],C[MAXN]; int r[MAXN],limit=1,l; inline void FFT(cmpx *A,int type){
for(int i=0;i<limit;i++)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int len=1;len<limit;len<<=1){
cmpx Wn=(cmpx){cos(Pi/len),type*sin(Pi/len)};
for(int j=0;j<limit;j+=(len<<1)){
cmpx w=(cmpx){1,0};
for(int k=0;k<len;k++,w=w*Wn){
cmpx x=A[j+k],y=w*A[j+len+k];
A[j+k]=x+y;
A[j+len+k]=x-y;
}
}
}
} }using namespace F_F_T; int n; int main(){
n=read();
for(int i=1;i<=n;i++){
scanf("%lf",&A[i].x);//long double 对应的是 %Lf
B[n-i].x=A[i].x;
C[i].x=(double)1/i/i;
}
while(limit<=n*2) limit<<=1,l++;
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(A,1);
FFT(B,1);
FFT(C,1);
for(int i=0;i<limit;i++)
A[i]=A[i]*C[i],B[i]=B[i]*C[i];
FFT(A,-1);
FFT(B,-1);
for(int i=0;i<limit;i++)//所有的都不要取到=
A[i].x/=limit,B[i].x/=limit;
for(int i=1;i<=n;i++)
printf("%.5lf\n",A[i].x-B[n-i].x);
}

[ZJOI2014]力(FFT)的更多相关文章

  1. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  2. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  3. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  4. 【bzoj3527】[Zjoi2014]力 FFT

    2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...

  5. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  6. [ZJOI2014]力 FFT

    题面 题解: \[F_j = \sum_{i < j}\frac{q_iq_j}{(i - j)^2} - \sum_{i > j}{\frac{q_iq_j}{(i - j)^2}}\] ...

  7. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  8. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

  9. BZOJ 3527 [Zjoi2014]力 ——FFT

    [题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...

  10. [BZOJ3527][ZJOI2014]力 FFT+数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...

随机推荐

  1. EF CODEFIRST WITH ORACLE

    摸索了半天,运行通过了,但是还是有一点坑的,对于初次使用的人来说,可能会遇到几个问题 首先安装两个dll 如果你已经下载好了dll Oracle.ManagedDataAccess.dll Oracl ...

  2. Codeforces #505(div1+div2) C Plasticine zebra

    题意:给你一段字符串,可以选择任意多的位置,每个位置会反转两边的字符串,问交错的字符串最长是多长? 思路:找规律,仔细分析样例1.假设位置为 1 2 3 4 5 6 7 8 9,反转之后会发现答案是7 ...

  3. Angular18 RXJS

    1 RX 全称是 Reactive Extensions,它是微软开发并维护的基于 Reactive Programming 范式实现的一套工具库集合:RX结合了观察者模式.迭代器模式.函数式编程来管 ...

  4. 面试题:hibernate 第二天 快照 session oid 有用

    ## Hibernate第二天 ## ### 回顾与反馈 ### Hibernate第一天 1)一种思想 : ORM OM(数据库表与实体类之间的映射) RM 2)一个项目 : CRM 客户关系管理系 ...

  5. U盘文件或目录损坏且无法读取怎么解决

    转自 http://jingyan.baidu.com/article/020278118afaec1bcc9ce5df.html U盘文件或目录损坏且无法读取怎么解决 听语音 | 浏览:37504 ...

  6. php学习笔记-超级全局变量

    超级全局变量,超级在哪里呢?相对于global类型的变量,超级全局变量的作用域是没有限制的,函数外.函数内.随便一个PHP文件都可以引用超级全局变量.在PHP中有很多超级全局变量, 常用的有_SERV ...

  7. 联想《拯救者》U盘UEFI启动装win7[完美激活](4)

    引用这篇文章 http://www.nwmie.com.cn/jiaocheng/1394.html 我们常常不想把自己的电脑从GUID分区方式改到MBR,但是这样装完win7无法激活,embarra ...

  8. 算法Sedgewick第四版-第1章基础-007一用两个栈实现简单的编译器

    1. package algorithms.util; import algorithms.ADT.Stack; /****************************************** ...

  9. 101334E Exploring Pyramids

    传送门 题目大意 看样例,懂题意 分析 实际就是个区间dp,我开始居然不会...详见代码(代码用的记忆化搜索) 代码 #include<iostream> #include<cstd ...

  10. Inheritance with EF Code First: Part 2 – Table per Type (TPT)

    In the previous blog post you saw that there are three different approaches to representing an inher ...