我又把Matrix写错啦


这东西讲课的时候竟然一笔带过了,淦

好吧这东西我不会证

那我们来愉快的看结论吧

啦啦啦

预备工作

你有一个 $ n $ 个点的图

比如说

   5
/|\
/ | \
2--1--3
\ |
\|
4

现在造一个$ n \times n $的矩阵

我们把他叫做$ D $

$ D $的元素有这样的一个规律:

对于某一个$ D_{i,j} $,如果 $ i = j $ ,它就等于点 $ i $ 的度数,否则就为 $ 0 $

那么我们可以yy出D的样子

\[ D=\left[
\begin{matrix}
4 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 3 \\
\end{matrix}
\right]
\]

除此之外我们还需要一个矩阵$ A $

就是邻接矩阵,直接拿来用就可以了

\[ A=\left[
\begin{matrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
\end{matrix}
\right]
\]

Now I have a D

I have an A

Ah~

$ D - A $!

\[ D-A=\left[
\begin{matrix}
4 & -1 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 & -1 \\
-1 & 0 & 3 & -1 & -1 \\
-1 & 0 & -1 & 2 & 0 \\
-1 & -1 & -1 & 0 & 3 \\
\end{matrix}
\right]
\]

依照数学的一贯尿性习惯

我们把$ D - A $起个名字吧

叫做鸡儿hop夫基尔霍夫Kirchhoff矩阵K,$ K = D - A $

关于行列式

对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值

上面那个是真-结论

你问我什么是行列式?

我们本来写矩阵不是

\[ K=\left[
\begin{matrix}
4 & -1 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 & -1 \\
-1 & 0 & 3 & -1 & -1 \\
-1 & 0 & -1 & 2 & 0 \\
-1 & -1 & -1 & 0 & 3 \\
\end{matrix}
\right]
\]

的么

我们把$ [ ] $换成 $ | | $ 就好了

(这可能不符合数学的严谨性)

(只在矩阵$ n = m $时有效)

\[ K=\left|
\begin{matrix}
4 & -1 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 & -1 \\
-1 & 0 & 3 & -1 & -1 \\
-1 & 0 & -1 & 2 & 0 \\
-1 & -1 & -1 & 0 & 3 \\
\end{matrix}
\right|
\]

了解更多

你问我什么是$ x $阶主子式?

就在 $ [1,n] $ 里面随便选个数 $ p $ ,选 $ (n-x) $ 次,把行列式里面的第 $ p $ 行和第 $ p $ 列同时删掉就好了

比如 $ K $ 的某个 $ n - 1 $ 阶主子式长这样:

\[ tmp=\left|
\begin{matrix}
4 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 3 & -1 \\
-1 & 0 & -1 & 2 \\
\end{matrix}
\right|
\]

行列式求值的问题

行列式的值记为$ det(A) $

方法你们都看过了

就是

  • 枚举 $ [1,n] $ 的所有排列,把它叫做 $ b $
  • 把 $ b $ 的逆序对数量求出来叫做 $ r $
  • 然后 $ det(A) = \sum (-1)^{r}\times A_{1,b_{1}}\times A_{2,b_{2}}\times ... \times A_{n,b_{n}} $

不过这样的复杂度肯定非常高

但我们有一种更好的方法

我们可以利用行列式的这些性质:

  • 行列式 $ A $ 中某行/列用同一数 $ k $ 乘,其det结果等于 $ kA $
  • 行列式 $ A $ 的det等于其转置行列式 $ A^T $ 的( $ A^T $ 的第i行为 $ A $ 的第i列)
  • 行列式 $ A $ 中两行/列互换,其det会变成原来的相反数。
  • 把行列式 $ A $ 的某行/列中各个数同乘一数后加到另一行/列中各对应数上,结果不会变
  • 行列式中某行/列有公因子,这个公因子可以提到行列式外面去

来把行列式变成上三角行列式(其实下三角也一样)

去看一看上三角行列式

至于怎么用我们亲爱的C++来写这东西

实现起来就是这个样子(*内部写了取模)

typedef long long lint;
const int _ = 202;
lint deter(lint a[_][_],int n,lint mo)
{
register int i,j,k;
register lint tmp,ans=1;
for(i=1;i<=n;i++)for(j=1;j<=n;j++)a[i][j]%=mo;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
while(a[j][i]!=0)
{
tmp=a[i][i]/a[j][i];
for(k=1;k<=n;k++)a[i][k]=(a[i][k]-a[j][k]*tmp+mo)%mo;
swap(a[i],a[j]),ans=-ans;
}
}
ans=(ans*a[i][i]+mo)%mo;
if(ans==0)return 0;
}
return (ans+mo)%mo;
}

使用Matrix-tree与它的行列式来解决生成树计数问题的更多相关文章

  1. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  2. 一篇自己都看不懂的Matrix tree总结

    Matrix tree定理用于连通图生成树计数,由于博主太菜看不懂定理证明,所以本篇博客不提供\(Matrix\ tree\)定理的证明内容(反正这个东西背结论就可以了是吧) 理解\(Matrix\ ...

  3. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  4. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  5. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  6. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  7. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  8. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  9. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

随机推荐

  1. Linux系统错误码对照表

    C Name Value Description EPERM 1 Operation not permitted ENOENT 2 No such file or directory ESRCH 3 ...

  2. Socket连接时,端口是怎么分配的

    socket 客户端连接socket 的端口每个是唯一的,每个新的连接,端口号+1 从1024-65534 最大到65534 然后再开始循环 中间遇到已经使用的端口就跳过

  3. 问题解决 Visual Studio 2015 无法复制文件“D:\swapfile.sys”

    莫名其妙的问题..度娘 必应统统不给力.. 还是找了谷大爷 严重性 代码 说明 项目 文件 行 列 类别 源 项目级别 工具 禁止显示状态错误 无法复制文件“D:\swapfile.sys”,原因是找 ...

  4. QT OpenGL中文教程在QT4版本后的错误代码更改(一)

    由于教程中说的已经够可以了,这里就不对代码进行分析了,有兴趣可以自己去看看.这个教程来源于原来的NeHeOpenGL中文教程 (http://www.yakergong.net/nehe/) ,但其有 ...

  5. php一个类引用另一个类的方法的写法

    default.php: <?php namespace SiteInfo{ class Site{ var $url; var $title; function setUrl($par){ $ ...

  6. BZOJ 4247 挂饰 01背包

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4247 JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机 ...

  7. 初始化mysql数据库时提示字符编码错误的解决办法

    有时候在安装完数据库并初始化的时候会出现如下错误: root@localhost mysql-5.5.19]# bash scripts/mysql_install_db --user=mysql - ...

  8. HTML第二章:列表,表格,媒体元素

    第二章:列表,表格,媒体元素 列表:有三种,有序列表,无序列表,定义列表 1.有序列表:<ol></ol>            列表项:<li></li&g ...

  9. Java框架 面试题总结

    一. Struts1.x 4 1. struts1优缺点,为什么要使用struts1 4 2. Struts1核心组件 4 3. Strust1请求处理流程  工作原理 4 4. Struts1线程安 ...

  10. 牛客小白月赛2 A 数字方阵【随机】【找规律】

    链接:https://www.nowcoder.com/acm/contest/86/A 题目描述  总是对数字的神秘感感到好奇.这次,他在纸上写下了  个从 到 的数字,并把这些数字排成了 的方阵. ...