Heavy Transportation

Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4 题目大意:让你求从1---n的路径中,找一条最短边的最大值。也就是在这个路径中,这条边的长度小于这条路径中所有边,但是大于这条路径之外的所有边长度。 解题思路:最短边最大化。d[i]表示从源点到i点的最短边长度。跟POJ 2253解法类似。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<iostream>
using namespace std;
const int maxn = 1e4+200;
const int INF = 0x3f3f3f3f;
int n,m;
struct HeapNode{
int d;
int u;
bool operator < (const HeapNode &rhs)const {
return d < rhs.d; //
}
};
struct Edge{
int from,to,dist;
};
vector<Edge>edge;
vector<int>G[maxn];
priority_queue<HeapNode>PQ;
int d[maxn] , vis[maxn];
void AddEdge(int u,int v,int w){
edge.push_back((Edge){u,v,w});
m = edge.size();
G[u].push_back(m-1);
}
void init(){
for(int i = 0; i<= n;i++){
G[i].clear();
}
edge.clear();
}
void Dijstra(int s){
for(int i = 0;i <= n; i++){
d[i] = 0;
}
d[s] = INF;
memset(vis,0,sizeof(vis));
PQ.push( (HeapNode){d[s],s} );
while(!PQ.empty()){
HeapNode x = PQ.top();
PQ.pop();
int u = x.u;
if(vis[u]) continue;
vis[u] = 1;
for(int i = 0; i < G[u].size(); i++){
Edge & e = edge[G[u][i]];
if(vis[e.to]) continue;
if(d[e.to] < min(d[e.from] , e.dist)){
d[e.to] = min(d[e.from], e.dist);
PQ.push((HeapNode){ d[e.to], e.to });
}
}
}
}
int main(){
int T,cnt = 0,mm;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&mm);
init();
int a,b,c, i;
for( i = 1; i <= mm; i++){
scanf("%d%d%d",&a,&b,&c);
a--,b--;
AddEdge(a,b,c);
AddEdge(b,a,c);
}
Dijstra(0);
printf("Scenario #%d:\n",++cnt);
printf("%d\n",d[n-1]);
puts("");
}
return 0;
}

  


POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】的更多相关文章

  1. POJ 1797 Heavy Transportation (最短路)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 22440   Accepted:  ...

  2. POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)

    题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...

  3. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  4. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  5. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  6. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  9. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

随机推荐

  1. java类加载器-----用户自定义类加载器实现

    java类加载器主要分为如下几种: jvm提供的类加载器 根类加载器:底层实现,主要加载java核心类库(如:java.lang.*) 扩展类加载器:使用java代码实现,主要加载如:jre/lib/ ...

  2. ES6学习之对象扩展

    简介表示法(直接写入变量和函数,作为对象的属性和方法) let x = "test" let obj={ x, //属性名为变量名,属性值为变量值 y(){console.log( ...

  3. nmap 快速扫描所有端口

    nmap -sT -sV -Pn -v xxx.xxx.xxx.xxx nmap -sS -p 1-65535 -v 192.168.1.254参数:-sS    TCP SYN扫描    nmap ...

  4. winform 客户端 HTTP协议与服务端通信以及解决中文乱码

    本来从来没有仔细研究过Http协议,今天因为公司业务需求,调试了半天,终于现在会Winform用Http协议与服务端通信了,其中常用的有POST和Get方式: 仔细看了人人网和新浪等大部分都是采用GE ...

  5. 使用python+requests对接口进行测试

    import unittestimport requestsimport json class Login(unittest.TestCase): def setUp(self): self.base ...

  6. Redux API之compose

    compose(...functions) 从右到左来组合多个函数. 这是函数式编程中的方法,为了方便,被放到了 Redux 里. 当需要把多个 store 增强器 依次执行的时候,需要用到它. 参数 ...

  7. 怎么查看Eclipse的版本信息

    工具/原料   Eclipse版本信息查看 第一种方法   1 找到Eclipse的解压目录就是你的Eclipse.exe 所在的目录 2 找到 .eclipseproduct 文件双击打开 3 如图 ...

  8. 做c语言的码农专业发展方向

    写了几年C语言代码,最近在思索,何去何从比较好? 搜索了一下,发现几个答案: 2015年10月编程语言排行榜 丢开C语言在教学应用外.在目前C语言的实际应用中.常见的应用的情景有如下: 内核/驱动,b ...

  9. 1. sqlmap超详细笔记+思维导图

    sqlmap思维导图: 基本操作笔记: -u #注入点 -f #指纹判别数据库类型 -b #获取数据库版本信息 -p #指定可测试的参数(?page=1&id=2 -p "page, ...

  10. Codeforces - 1181B - Split a Number - 贪心

    https://codeforces.com/contest/1181/problem/B 从中间拆开然后用大数搞一波. 当时没想清楚奇偶是怎么弄,其实都可以,奇数长度字符串的中心就在len/2,偶数 ...