关于 sklearn.decomposition.KernelPCA的简单介绍
from sklearn import decomposition
import numpy as np
A1_mean = [1, 1]
A1_cov = [[2, .99], [1, 1]]
A1 = np.random.multivariate_normal(A1_mean, A1_cov, 50) A2_mean = [5, 5]
A2_cov = [[2, .99], [1, 1]]
A2 = np.random.multivariate_normal(A2_mean, A2_cov, 50) A = np.vstack((A1, A2)) #A1:50*2;A2:50*2,水平连接 B_mean = [5, 0]
B_cov = [[.5, -1], [-0.9, .5]]
B = np.random.multivariate_normal(B_mean, B_cov, 100) import matplotlib.pyplot as plt plt.scatter(A[:,0],A[:,1],c='r',marker='o')
plt.scatter(B[:,0],B[:,1],c='g',marker='*')
plt.show() #很蠢的想法,把A和B合并,然后进行一维可分
kpca = decomposition.KernelPCA(kernel='cosine', n_components=1)
AB = np.vstack((A, B))
AB_transformed = kpca.fit_transform(AB)
plt.scatter(AB_transformed,AB_transformed,c='b',marker='*')
plt.show() kpca = decomposition.KernelPCA(n_components=1)
AB = np.vstack((A, B))
AB_transformed = kpca.fit_transform(AB)
plt.scatter(AB_transformed,AB_transformed,c='b',marker='*')
plt.show()
注意1:书上说consin PCA 比缺省的linear PCA要好,是不是consin PCA更紧致,数据不发散.
始终搞不懂什么时候用,什么时候不用
fit(X, y=None)
Fit the model from data in X.
ParametersX: array-like, shape (n_samples, n_features) :
Training vector, where n_samples in the number of samples and n_features is the numberof features.
fit_transform(X, y=None, **params)
Fit the model from data in X and transform X.
ParametersX: array-like, shape (n_samples, n_features) :
Training vector, where n_samples in the number of samples and n_features is the numberof features.
关于 sklearn.decomposition.KernelPCA的简单介绍的更多相关文章
- Mahout学习之Mahout简单介绍、安装、配置、入门程序測试
一.Mahout简单介绍 查了Mahout的中文意思--驭象的人,再看看Mahout的logo,好吧,想和小黄象happy地玩耍,得顺便陪陪这位驭象人耍耍了... 附logo: (就是他,骑在象头上的 ...
- [原创]关于mybatis中一级缓存和二级缓存的简单介绍
关于mybatis中一级缓存和二级缓存的简单介绍 mybatis的一级缓存: MyBatis会在表示会话的SqlSession对象中建立一个简单的缓存,将每次查询到的结果结果缓存起来,当下次查询的时候 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- yii2的权限管理系统RBAC简单介绍
这里有几个概念 权限: 指用户是否可以执行哪些操作,如:编辑.发布.查看回帖 角色 比如:VIP用户组, 高级会员组,中级会员组,初级会员组 VIP用户组:发帖.回帖.删帖.浏览权限 高级会员组:发帖 ...
- angular1.x的简单介绍(二)
首先还是要强调一下DI,DI(Denpendency Injection)伸手获得,主要解决模块间的耦合关系.那么模块是又什么组成的呢?在我看来,模块的最小单位是类,多个类的组合就是模块.关于在根模块 ...
- Linux的简单介绍和常用命令的介绍
Linux的简单介绍和常用命令的介绍 本说明以Ubuntu系统为例 Ubuntu系统的安装自行百度,或者参考http://www.cnblogs.com/CoderJYF/p/6091068.html ...
- iOS-iOS开发简单介绍
概览 终于到了真正接触IOS应用程序的时刻了,之前我们花了很多时间去讨论C语言.ObjC等知识,对于很多朋友而言开发IOS第一天就想直接看到成果,看到可以运行的IOS程序.但是这里我想强调一下,前面的 ...
- iOS开发多线程篇—多线程简单介绍
iOS开发多线程篇—多线程简单介绍 一.进程和线程 1.什么是进程 进程是指在系统中正在运行的一个应用程序 每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内 比如同时打开QQ.Xcod ...
随机推荐
- 私有云的迁移:从VMware到OpenStack
VMware和OpenStack经常被描述为相互竞争的两种私有云技术.虽然这两种技术其实可以互补,但一些组织却选择从VMware迁移到OpenStack的私有云上. 让我们来看看这些组织如何能同时使用 ...
- C# 串口调试助手源码
本方法,禁用跨进程错误(做法不太好,但是对于单片机出身的人来说,好理解,能用就行). 基本功能: 1.点串口号的下拉菜单自动当前检索设备管理器的COM 2.发送模式可选,hex和string两种 3. ...
- Oracle分页总汇
Oracle分页总汇 select * from (select a.*,rownum row_num from (select * from mytable t order by t.id desc ...
- c的详细学习(1)C语言概述
本节用来简要介绍c语言. (1)C语言的特点: C语言是一种集汇编语言及高级语言为一身的,面向过程的结构化和模块化的程序设计语言. 特点: 兼具高级语言与低级语言的双重能力.C语言允许 ...
- nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引 不定时抽风
今天添加新项目想添加几个工具包,打开NuGet就这样了 发生错误如下: [nuget.org] 无法加载源 https://api.nuget.org/v3/index.json 的服务索引.响应状 ...
- hbase shell-dml(数据管理指令)
hbase shell数据管理篇: append count delete deleteall get get_counter get_splits incr put scan truncate tr ...
- 本地建立SVN服务器
想在自己电脑上搭建SVN服务器,于是有以下步骤. 首先明确SVN服务包括服务器和客户端,平时听到的TortoiseSVN就是一个客户端. 首先下载两个软件,服务器端我使用的是VisualSVN,版本是 ...
- 算法(Algorithms)第4版 练习 1.3.41
方法实现: //1.3.41 public Queue(Queue<Item> q) { Queue<Item> result = new Queue<Item>( ...
- MapReduce分区的使用(Partition)
MapReduce中的分区默认是哈希分区,根据map输出key的哈希值做模运算,如下 int result = key.hashCode()%numReduceTask; 如果我们需要根据业务需求来将 ...
- R 语言实现求导
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能 ...