loj #108. 多项式乘法
#108. 多项式乘法
题目描述
这是一道模板题。
输入两个多项式,输出这两个多项式的乘积。
输入格式
第一行两个整数 n nn 和 m mm,分别表示两个多项式的次数。
第二行 n+1 n + 1n+1 个整数,分别表示第一个多项式的 0 00 到 n nn 次项前的系数。
第三行 m+1 m + 1m+1 个整数,分别表示第二个多项式的 0 00 到 m mm 次项前的系数。
输出格式
一行 n+m+1 n + m + 1n+m+1 个整数,分别表示乘起来后的多项式的 0 00 到 n+m n + mn+m 次项前的系数。
样例
样例输入
1 2
1 2
1 2 1
样例输出
1 4 5 2
数据范围与提示
0≤n,m≤105 0 \leq n, m \leq 10 ^ 50≤n,m≤105,保证输入中的系数大于等于 0 00 且小于等于 9 99。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 400010
#define PI (acos(-1.0))
using namespace std;
int rd[maxn];
struct node{
double x,y;
node(double a=,double b=):x(a),y(b){}
node operator + (const node &c)
{return node(x+c.x,y+c.y);}
node operator - (const node &c)
{return node(x-c.x,y-c.y);}
node operator * (const node &c)
{return node(x*c.x-y*c.y,x*c.y+y*c.x);}
node operator / (const double &c)
{return node(x/c,y/c);}
}a[maxn],b[maxn];
void fft(node *a,int n,int f){
node wn,w;int i;
for(int i=;i<=n;i++)
if(rd[i]>i)swap(a[i],a[rd[i]]);
for(int k=;k<n;k<<=){
wn=node(cos(PI/k),f*sin(PI/k));
for(int j=;j<n;j+=(k<<)){
for(w=node(,),i=;i<k;i++,w=w*wn){
node x=a[i+j];
node y=a[i+j+k]*w;
a[i+j]=x+y;
a[i+j+k]=x-y;
}
}
}
if(f==-)
for(int i=;i<=n;i++)a[i]=a[i]/n;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&a[i].x);
for(int i=;i<=m;i++)scanf("%lf",&b[i].x);
m=n+m,n=;int l=;
while(n<=m){n<<=,l++;}
for(int i=;i<=n;i++)rd[i]=(rd[i>>]>>)|((i&)<<(l-));
fft(a,n,);fft(b,n,);
for(int i=;i<=n;i++)a[i]=a[i]*b[i];
fft(a,n,-);
for(int i=;i<=m;i++)printf("%d ",(int)(a[i].x+0.5));
return ;
}
loj #108. 多项式乘法的更多相关文章
- LibreOJ #108. 多项式乘法
二次联通门 : LibreOJ #108. 多项式乘法 /* LibreOJ #108. 多项式乘法 FFT板子题 不行啊...跑的还是慢 应该找个机会学一学由乃dalao的fft 或者是毛爷爷的ff ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- [笔记]ACM笔记 - 利用FFT求卷积(求多项式乘法)
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
随机推荐
- 删除pool error的解决方法
标签(空格分隔): ceph,ceph运维,pool 问题描述: 删除pool的时候提示下面的错误: [root@node3 ~]# ceph osd pool delete ecpool ecpoo ...
- vmware全屏后去掉上面的横杠
全屏后选择查看—>独占模式最上面的杠就没了,而且不按退出快捷键,不会在切换到外面的系统中了.
- X509 文件扩展名
编码 (也用于扩展名) .DER = 扩展名DER用于二进制DER编码的证书.这些证书也可以用CER或者CRT作为扩展名.比较合适的说法是“我有一个DER编码的证书”,而不是“我有一个DER证书”. ...
- 2015.3.3 VC6调用dll
用VC新建一对话框工程,在一按钮点击事件中添加如下代码: typedef void (WINAPI * TESTDLL)(); HINSTANCE hmod; hmod = ::LoadLibrary ...
- Excel向数据库插入数据(执行一次只需连接一次)-batch简单使用
由于前端时间向数据库插入excel中的数据时,每插入一条数据,就得连接一次数据库:后来发现这种做法不好,如果excel中有很多条数据,就得连接很多次数据库,这样就很浪费资源而且不安全,有时数据库也会报 ...
- net.sf.fjep.fatjar_0.0.32 eclipse4.x 可以用的jar包
http://pan.baidu.com/s/1nvlIw21?errno=0&errmsg=Auth%20Login%20Sucess&stoken=bb98db9f451c00ae ...
- dp-最小点对问题
dp-最小点对问题 //最小点对问题 //采用分治思想,先分成两个子集分别求出最短距离d //再对两个子集进行合并,在一个dx2d的矩形中,最多可能有6个点距离小于d //按y排序,当x增长时求出这6 ...
- Codeforces 914C Travelling Salesman and Special Numbers (数位DP)
题意:题目中定义了一种运算,把数字x变成数字x的二进制位数.问小于n的恰好k次运算可以变成1的数的个数(题目中的n是二进制数,n最大到2^1000) 思路:容易发现,无论多么大的数,只要进行了一次运算 ...
- Flow Layout
--------------siwuxie095 将根面板 contentPane 的布局切换为 Flow Layout Flow La ...
- Visual Studio Command Prompt 工具配置方法
有时候,我们无法找到Visual Studio Command Prompt,需要手动配置 打开 Visual studio2015,选择 "工具"—>"外部工具 ...