#108. 多项式乘法

 

题目描述

这是一道模板题。

输入两个多项式,输出这两个多项式的乘积。

输入格式

第一行两个整数 n nn 和 m mm,分别表示两个多项式的次数。

第二行 n+1 n + 1n+1 个整数,分别表示第一个多项式的 0 00 到 n nn 次项前的系数。

第三行 m+1 m + 1m+1 个整数,分别表示第二个多项式的 0 00 到 m mm 次项前的系数。

输出格式

一行 n+m+1 n + m + 1n+m+1 个整数,分别表示乘起来后的多项式的 0 00 到 n+m n + mn+m 次项前的系数。

样例

样例输入

1 2
1 2
1 2 1

样例输出

1 4 5 2

数据范围与提示

0≤n,m≤105 0 \leq n, m \leq 10 ^ 50≤n,m≤10​5​​,保证输入中的系数大于等于 0 00 且小于等于 9 99。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 400010
#define PI (acos(-1.0))
using namespace std;
int rd[maxn];
struct node{
double x,y;
node(double a=,double b=):x(a),y(b){}
node operator + (const node &c)
{return node(x+c.x,y+c.y);}
node operator - (const node &c)
{return node(x-c.x,y-c.y);}
node operator * (const node &c)
{return node(x*c.x-y*c.y,x*c.y+y*c.x);}
node operator / (const double &c)
{return node(x/c,y/c);}
}a[maxn],b[maxn];
void fft(node *a,int n,int f){
node wn,w;int i;
for(int i=;i<=n;i++)
if(rd[i]>i)swap(a[i],a[rd[i]]);
for(int k=;k<n;k<<=){
wn=node(cos(PI/k),f*sin(PI/k));
for(int j=;j<n;j+=(k<<)){
for(w=node(,),i=;i<k;i++,w=w*wn){
node x=a[i+j];
node y=a[i+j+k]*w;
a[i+j]=x+y;
a[i+j+k]=x-y;
}
}
}
if(f==-)
for(int i=;i<=n;i++)a[i]=a[i]/n;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&a[i].x);
for(int i=;i<=m;i++)scanf("%lf",&b[i].x);
m=n+m,n=;int l=;
while(n<=m){n<<=,l++;}
for(int i=;i<=n;i++)rd[i]=(rd[i>>]>>)|((i&)<<(l-));
fft(a,n,);fft(b,n,);
for(int i=;i<=n;i++)a[i]=a[i]*b[i];
fft(a,n,-);
for(int i=;i<=m;i++)printf("%d ",(int)(a[i].x+0.5));
return ;
}

loj #108. 多项式乘法的更多相关文章

  1. LibreOJ #108. 多项式乘法

    二次联通门 : LibreOJ #108. 多项式乘法 /* LibreOJ #108. 多项式乘法 FFT板子题 不行啊...跑的还是慢 应该找个机会学一学由乃dalao的fft 或者是毛爷爷的ff ...

  2. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  3. [UOJ#34]多项式乘法

    [UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...

  4. [笔记]ACM笔记 - 利用FFT求卷积(求多项式乘法)

    卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项 ...

  5. FFT模板(多项式乘法)

    FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...

  6. 【Uoj34】多项式乘法(NTT,FFT)

    [Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...

  7. 【learning】多项式乘法&fft

    [吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...

  8. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  9. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

随机推荐

  1. Linux python安装

    Linux 安装 Python3.5   1. 准备 操作系统:Red Hat Enterprise Linux Server release 6.5 (Santiago) Python 安装包:Py ...

  2. Spark Streaming之一:整体介绍

    提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可 ...

  3. mongo shell命令

    https://docs.mongodb.com/manual/mongo/ 一.MongoDB客户端使用 1.mongo:启动mongo的客户端,和mongo客户端的登录 [root@cmos1 b ...

  4. java restful response 万能类

    import java.util.HashMap; import java.util.Map; public class ResponseData { private final String mes ...

  5. 四 Mixer

    Mixer在应用程序和基础架构后端之间提供通过中介层.它的设计将策略决策移出应用层,用运维人员能够控制的配置取而代之. Mixer的设计目的是改变层次之间的边界,以此降低总体复杂性.从服务代码中剔除策 ...

  6. 使用Fiddler进行iOS APP的HTTP/HTTPS抓包

    Fiddler不但能截获各种浏览器发出的HTTP请求, 也可以截获各种智能手机发出的HTTP/HTTPS请求.Fiddler能捕获IOS设备发出的请求,比如IPhone, IPad, MacBook. ...

  7. C++面试考点

    1.下面程序在x64下结果 struct st { int a; long long b; double c; }; int main() { st s; cout << &s.a ...

  8. Python数据库(三)-使用sqlalchemy创建表

    首先需要安装sqlalchemy根据所需情况调用数据库接口,对数据库进行操作pymysql:mysql+pymysql://<username>:<password>@< ...

  9. Python垃圾回收机制:gc模块

    在Python中,为了解决内存泄露问题,采用了对象引用计数,并基于引用计数实现自动垃圾回收. 由于Python 有了自动垃圾回收功能,就造成了不少初学者误认为不必再受内存泄漏的骚扰了.但如果仔细查看一 ...

  10. DAY11-MYSQL单表查询

    一 单表查询的语法 SELECT 字段1,字段2... FROM 表名 WHERE 条件 GROUP BY field HAVING 筛选 ORDER BY field LIMIT 限制条数 二 关键 ...