loj #108. 多项式乘法
#108. 多项式乘法
题目描述
这是一道模板题。
输入两个多项式,输出这两个多项式的乘积。
输入格式
第一行两个整数 n nn 和 m mm,分别表示两个多项式的次数。
第二行 n+1 n + 1n+1 个整数,分别表示第一个多项式的 0 00 到 n nn 次项前的系数。
第三行 m+1 m + 1m+1 个整数,分别表示第二个多项式的 0 00 到 m mm 次项前的系数。
输出格式
一行 n+m+1 n + m + 1n+m+1 个整数,分别表示乘起来后的多项式的 0 00 到 n+m n + mn+m 次项前的系数。
样例
样例输入
1 2
1 2
1 2 1
样例输出
1 4 5 2
数据范围与提示
0≤n,m≤105 0 \leq n, m \leq 10 ^ 50≤n,m≤105,保证输入中的系数大于等于 0 00 且小于等于 9 99。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 400010
#define PI (acos(-1.0))
using namespace std;
int rd[maxn];
struct node{
double x,y;
node(double a=,double b=):x(a),y(b){}
node operator + (const node &c)
{return node(x+c.x,y+c.y);}
node operator - (const node &c)
{return node(x-c.x,y-c.y);}
node operator * (const node &c)
{return node(x*c.x-y*c.y,x*c.y+y*c.x);}
node operator / (const double &c)
{return node(x/c,y/c);}
}a[maxn],b[maxn];
void fft(node *a,int n,int f){
node wn,w;int i;
for(int i=;i<=n;i++)
if(rd[i]>i)swap(a[i],a[rd[i]]);
for(int k=;k<n;k<<=){
wn=node(cos(PI/k),f*sin(PI/k));
for(int j=;j<n;j+=(k<<)){
for(w=node(,),i=;i<k;i++,w=w*wn){
node x=a[i+j];
node y=a[i+j+k]*w;
a[i+j]=x+y;
a[i+j+k]=x-y;
}
}
}
if(f==-)
for(int i=;i<=n;i++)a[i]=a[i]/n;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&a[i].x);
for(int i=;i<=m;i++)scanf("%lf",&b[i].x);
m=n+m,n=;int l=;
while(n<=m){n<<=,l++;}
for(int i=;i<=n;i++)rd[i]=(rd[i>>]>>)|((i&)<<(l-));
fft(a,n,);fft(b,n,);
for(int i=;i<=n;i++)a[i]=a[i]*b[i];
fft(a,n,-);
for(int i=;i<=m;i++)printf("%d ",(int)(a[i].x+0.5));
return ;
}
loj #108. 多项式乘法的更多相关文章
- LibreOJ #108. 多项式乘法
二次联通门 : LibreOJ #108. 多项式乘法 /* LibreOJ #108. 多项式乘法 FFT板子题 不行啊...跑的还是慢 应该找个机会学一学由乃dalao的fft 或者是毛爷爷的ff ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- [笔记]ACM笔记 - 利用FFT求卷积(求多项式乘法)
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
随机推荐
- HDU 2544 最短路(邻接表+优先队列+dijstra优化模版)
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 2017-09-17 python 学习笔记
Mock 库 介绍: http://blog.csdn.net/chdhust/article/details/50663729 说明mock能做什么. 可以考虑在调试方法时使用 Mock 库
- idea右键单击没有 svn选项处理办法
问题一: IntelliJ IDEA打开带SVN信息的项目不显示SVN信息,项目右键SVN以及图标还有Changes都不显示解决方法 在VCS菜单中有个开关,叫Enabled Version Cont ...
- Monitoring tools that everyone's currently using
Although a lot of new tools have arrived since 2011, it's clear that older open source tools like Na ...
- javascript——对象的概念——创建对象与销毁对象
一.创建对象 1.创建空对象 方式一: var o ={};o; //Object {} typeof(o); //"object" 方式二: var o=new Object() ...
- 问题:oracle字符串函数;结果:Oracle字符串函数
Oracle字符串函数 最近换了新公司,又用回Oracle数据库了,很多东西都忘记了,只是有个印象,这两晚抽了点时间,把oracle对字符串的一些处理函数做了一下整理,供日后查看.. 平常我们用Ora ...
- 如何利用MATLAB并行计算缩短程序运行时间
本来CPU就是双核,不过以前一直注重算法,没注意并行计算的问题.今天为了在8核的dell服务器上跑程序才专门看了一下.本身写的程序就很容易实现并行化,因为beamline之间并没有考虑相互作用.等于可 ...
- [Python Study Notes]气泡散点图绘制
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- oracle --(二)分区(extent)
基本关系:数据库---表空间---数据段---分区---数据块 一.分区(extent)分区extent是比数据块大一级的存储结构,是几个逻辑上相邻的data block的组合.我们知道,物理存储通常 ...
- sql基本查询语句练习
student(S#,Sname,Sage,Ssex) 学生表 S#:学号: Sname:学生姓名:Sage:学生年龄:Ssex:学生性别 Course(C#,Cname,T#) 课程表 ...