题面

传送门

题解

口胡的整除分块单次询问\(O(\sqrt{n})\)的做法居然\(T\)了?那还是好好看正解吧……

首先我们枚举\(j\),求对于每个\(j\)有所有\(i<j\)的\(\gcd(i,j)\)之和,然后可以转化成枚举\(\gcd d\),然后要满足\(\gcd(\frac{i}{d},\frac{j}{d})=1\)

那么最后的式子可以化成$$Ans=\sum_{j=2}^{n}\sum_{t|j,t<j}\varphi({j\over t})*t$$

复杂度和正常的筛法一样,预处理一下就能单次询问\(O(1)\)了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e6+5;
bitset<N>vis;int p[N],phi[N],n,m;ll sum[N];
void init(int n){
phi[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,phi[i]=i-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
fp(i,2,n)fp(j,1,n/i)sum[i*j]+=phi[i]*j;
fp(i,1,n)sum[i]+=sum[i-1];
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();init(N-5);
while(T--)n=read(),print(sum[n]);
return Ot(),0;
}

[51nod1188]最大公约数之和 V2(筛法)的更多相关文章

  1. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  2. 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB  给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和.       相当于计算这段程 ...

  3. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  4. 51nod - 1188 - 最大公约数之和 V2 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1188 求\(\sum\limits_{i=1}^{n-1}\sum\limits_ ...

  5. 51nod 1188 最大公约数之和 V2

    第二个\( O(T\sqrt(n)) \)复杂度T了..T了..T了...天地良心,这能差多少?! 于是跑去现算(. \[ \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i, ...

  6. 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...

  7. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  8. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  9. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

随机推荐

  1. centos 虚拟机联网

    在windows主机安装centos虚拟机后,遇到虚拟机连接外网问题. 解决方案:http://blog.csdn.net/pang040328/article/details/12427359 经过 ...

  2. Python中获得当前目录和上级目录

    [转]原文地址:http://blog.csdn.net/liuweiyuxiang/article/details/71154346 获取当前文件的路径: from os import path d ...

  3. 【转】 Pro Android学习笔记(八四):了解Package(3):包间数据共享

    目录(?)[-] 共享User ID的设置 共享资源例子 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://blog.csdn.net/flowing ...

  4. 单片机RS485通信接口、控制线、原理图及程序实例

    RS232 标准是诞生于 RS485 之前的,但是 RS232 有几处不足的地方: 接口的信号电平值较高,达到十几 V,使用不当容易损坏接口芯片,电平标准也与TTL 电平不兼容. 传输速率有局限,不可 ...

  5. spring bean管理

    轻量级,无侵入 Bean管理 1 创建applicationContext.xml 2 配置被管理的Bean 3 获取Bean pom.xml配置 <dependency> <gro ...

  6. 01-16委托Func

    在类中编写方法: 在主函数中调用函数: 效果图:

  7. ssh整合(dao使用hibernateTemplate)

  8. css知多少(10)——display(转)

    css知多少(10)——display   1. 引言 网页的所有元素,除了“块”就是“流”,而且“流”都是包含在“块”里面的(最外层的body就是一个“块”).在本系列一开始讲<浏览器默认样式 ...

  9. CURD 操作 [2]

    一.数据读取 在之前的课程中,我们已经大量使用了数据读取的功能,比如 select()方法.结合各种连贯方法可以实现数据读取的不同要求,支持连贯的方法有: 1.where,查询或更新条件:2.tabl ...

  10. php返回文件路径

    1 basename — 返回路径中的文件名部分 如果文件名为test.php,路径为www/hj/test.php echo basename($_SERVER['PHP_SELF']); 输出为: ...