4. Median of Two Sorted Arrays(topK-logk)
4. Median of Two Sorted Arrays
题目
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
解析
题目是这样的:给定两个已经排序好的数组(可能为空),找到两者所有元素中第k大的元素。另外一种更加具体的形式是,找到所有元素的中位数。本篇文章我们只讨论更加一般性的问题:如何找到两个数组中第k大的元素?不过,测试是用的两个数组的中位数的题目,Leetcode第4题 Median of Two Sorted Arrays
方案1:假设两个数组总共有n个元素,那么显然我们有用O(n)时间和O(n)空间的方法:用merge sort的思路排序,排序好的数组取出下标为k-1的元素就是我们需要的答案。
这个方法比较容易想到,但是有没有更好的方法呢?方案2:我们可以发现,现在我们是不需要“排序”这么复杂的操作的,因为我们仅仅需要第k大的元素。我们可以用一个计数器,记录当前已经找到第m大的元素了。同时我们使用两个指针pA和pB,分别指向A和B数组的第一个元素。使用类似于merge sort的原理,如果数组A当前元素小,那么pA++,同时m++。如果数组B当前元素小,那么pB++,同时m++。最终当m等于k的时候,就得到了我们的答案——O(k)时间,O(1)空间。
但是,当k很接近于n的时候,这个方法还是很费时间的。当然,我们可以判断一下,如果k比n/2大的话,我们可以从最大的元素开始找。但是如果我们要找所有元素的中位数呢?时间还是O(n/2)=O(n)的。有没有更好的方案呢?
求中位数,给了两个例子。总结来看就是总数是偶数还是奇数。
奇数:(m+n)/2求得中间数,它是第(m+n)/2+1个数。这个值在我们利用归并思想解题时使用。
偶数:(m+n)/2、(m+n)/2+1。这两个数也就是第(m+n)/2、(m+n)/2+1个数。
利用归并思想查找到第k个数,按照运算规则即可。
double findK(vector<int>&a,int lena,vector<int>&b,int lenb,int k)
{
int i=0,j=0;
for(;i<lena&&j<lenb;)
{
k--;
if(a[i]<b[j])
{
if(k==0)
return a[i];
i++;
}
else if(k==0)
return b[j];
else
j++;
}
return i>=lena?b[j+k-1]:a[i+k-1];
}
double findMedianSortedArrays(vector<int>&nums1, vector<int>&nums2) {
int m=nums1.size(),n=nums2.size();
return ((m+n)&1)?findK(nums1,m,nums2,n,(m+n+1)>>1):
((findK(nums1,m,nums2,n,(m+n)>>1)+findK(nums1,m,nums2,n,((m+n)>>1)+1))*0.5);
}
- 我们可以考虑从k入手。如果我们每次都能够剔除一个一定在第k大元素之前的元素,那么我们需要进行k次。但是如果每次我们都剔除一半呢?所以用这种类似于二分的思想
题目中需要求出的结果是中位数,中位数的特点是其以后的数都比它大,前面的数都比它小。又因为两个数组都已经是有序数组,因为我们所需要的结果就是数组a中的第i个元素和数组b中第j个元素,使得i+j-2等于两个数组长度和的一半,所以此题就可以转换成求i,j这两个值的问题了。在数组a中确定i以及在数组b中确定j,此时可以采用二分查找的方法,通过不断缩小查找范围来确实所需要查找的值,也符合题目中所要求的分治算法的思想。
class Solution {
public:
int getkth(int s[], int m, int l[], int n, int k){
//确保m < n
if (m > n)
return getkth(l, n, s, m, k);
if (m == 0)
return l[k - 1];
if (k == 1)
return min(s[0], l[0]);
//递归过程
int i = min(m, k / 2), j = min(n, k / 2);
if (s[i - 1] > l[j - 1])
return getkth(s, m, l + j, n - j, k - j);
else
return getkth(s + i, m - i, l, n, k - i);
return 0;
}
double findMedianSortedArrays(int A[], int m, int B[], int n) {
//总长度的一半
int l = (m + n + 1) / 2;
int r = (m + n + 2) / 2;
return (getkth(A, m ,B, n, l) + getkth(A, m, B, n, r)) / 2.0;
}
};
题目来源
- 4. Median of Two Sorted Arrays
- leetcode之 median of two sorted arrays
- 【LeetCode】4. Median of Two Sorted Arrays (2 solutions)
4. Median of Two Sorted Arrays(topK-logk)的更多相关文章
- 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays
一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...
- [LintCode] Median of Two Sorted Arrays 两个有序数组的中位数
There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted ...
- 2.Median of Two Sorted Arrays (两个排序数组的中位数)
要求:Median of Two Sorted Arrays (求两个排序数组的中位数) 分析:1. 两个数组含有的数字总数为偶数或奇数两种情况.2. 有数组可能为空. 解决方法: 1.排序法 时间复 ...
- 【转载】两个排序数组的中位数 / 第K大元素(Median of Two Sorted Arrays)
转自 http://blog.csdn.net/zxzxy1988/article/details/8587244 给定两个已经排序好的数组(可能为空),找到两者所有元素中第k大的元素.另外一种更加具 ...
- LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)
题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...
- No.004 Median of Two Sorted Arrays
4. Median of Two Sorted Arrays Total Accepted: 104147 Total Submissions: 539044 Difficulty: Hard The ...
- leetcode第四题:Median of Two Sorted Arrays (java)
Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. Find t ...
- LeetCode(3) || Median of Two Sorted Arrays
LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...
- Kotlin实现LeetCode算法题之Median of Two Sorted Arrays
题目Median of Two Sorted Arrays(难度Hard) 方案1,数组合并&排序调用Java方法 import java.util.* class Solution { fu ...
- LeetCode--No.004 Median of Two Sorted Arrays
4. Median of Two Sorted Arrays Total Accepted: 104147 Total Submissions: 539044 Difficulty: Hard The ...
随机推荐
- BZOJ3990 排序(sort)
排序(sort) 题目描述 小A有一个1~2N的排列A[1..2N],他希望将数组A从小到大排序.小A可以执行的操作有N种,每种操作最多可以执行一次.对于所有的i(1<=i<=N),第i种 ...
- 怎样把本地的jar包引入到maven工程里面
有些jar包在maven库里面查找不到,但是maven项目又有用到,此时最简单的方法就是把该jar包放到工程底下某个目录,然后在pom.xml里面配置dependency引入它. 具体如何操作呢? 假 ...
- java.net.BindException: Address already in use: JVM_Bind <null>:8080错误
今天打开myeclipse出现java.net.BindException: Address already in use: JVM_Bind <null>:8080错误 从网上搜了一下大 ...
- TCP面试题之三次握手过程
TCP简介: 1.面向连接的.可靠的.基于字节流的传输层的通信协议: 2.将应用层的数据流分割成报文段并发送给目标节点的TCP层: 3.数据包都有序号,对方收到则发送ACK确认,未收到则重传: 4.使 ...
- 手动删除Win7系统服务列表中残留服务的操作步骤
卸载tomcat的时候服务用cmd运行不能删除 需要用管理员才能删除 手动删除Win7系统服务列表中残留服务的操作步骤分享给大家,在使用深度Win7系统过程中,将一些程序删除后,有些在服务列表中还会残 ...
- [ CodeVS冲杯之路 ] P1214
不充钱,你怎么AC? 题目:http://codevs.cn/problem/1214/ 这道题类似于最长区间覆盖,仅仅是将最长区间改成了最多线段,我们贪心即可 先将线段直接右边-1,然后按左边为第一 ...
- [bzoj1001][BJOI2006]狼抓兔子——最大流转最短路,平面图
题目描述: 给定一个平面图,求最小割. 题解: 本题是一道经典题. 周冬Orz的论文是很好的研究资料. 这道题点太多,所以直接跑dinic无疑会超时. 我们观察原图,发现原图是一个平面图. 什么是平面 ...
- 使用 padding-bottom 设置高度基于宽度的自适应
我们在做移动端列表,通常会做到图文列表,列表是自适应的.当列表中有图片,图片的宽度是随着列表宽的变化而变化,我们为了在图片宽度变化的时候做到图片的不变形,所有采用以下办法. 本文章只讲语法 html ...
- 蓝牙攻击指南(kali)
基本操作 hciconfig 查看蓝牙设备信息 hcitool:这是一个查询工具. 可以用来查询设备名称,设备ID,设备类别和设备时钟. hcidump:可以使用这个来嗅探蓝牙通信 hciconfig ...
- vmware上搭建kickstart 网络安装centos6.2的过程
前言 什么是PXE? PXE(Pre-boot Execution Environment,预启动执行环境)协议使计算机可以通过网络启动.协议分client和server. PXE client 在网 ...